在小学数学教学中,应用题的教学占有重要地位。对于如何教好这部分知识,我谈谈自己在教学应用题的体会。
首先要培养学生的审题习惯,仔细认真的审题,弄明白题意,是准确解答应用题的先决条件。因此,在教学中可先让学生根据解题要求找出题中的直接条件和间接条件,构建起条件与问题之间的联系,确定数量关系。为了便于分析问题中的已知量与未知量之间的联系,审题时可要求学生边读题边思考,用不同的符号划出条件和问题或用线段图把已知条件和所求问题表示出来。
一、为了培养儿童细致审题的习惯,我常把一些容易混淆的题目同时出现,让学生分析计算。
例:(1)一个长方形和一个正方形的周长相等,长方形的长是8米,宽是6米。正方形的边长是多少米?(2)一个长方形和一个正方形的周长相等,正方形的边长是6厘米,长方形是长是8厘米,长方形是宽是多少厘米?
经常进行此类练习,就容易养成认真审题的习惯。
二、教给学生分析应用题常用的推理方法
在解题过程中,学生往往习惯于模仿教师和例题的解答方法,机械地去完成。因此,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克?
指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)?
综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
三、对易混淆的问题进行对比分析
对一些有联系而又容易混淆的应用题可引导学生进行对比分析,例如:(1)一筐苹果重20千克,一筐梨的质量比一筐苹果的2倍少10千克,一筐梨重多少千克?(2)一筐苹果重20千克,一筐苹果的的质量比一筐梨的2倍少10千克,一筐梨重多少千克?
这样的两种题型容易混淆。一是他们分不清是用乘法还是用除法;二是分不清计算时需不需要加括号。