对于任意一个整数除以一个自然数,一定存在唯一确定的商和余数,使被除数=除数×商+余数(0≤余数<除数)
也就是说,整数a除以自然数b,一定存在唯一确定的q和r,使a=bq+r(0≤r<b)成立.
我们把对于已知整数a和自然数b,求q和r,使a=bq+r(0≤r<b)成立的运算叫做有余数的除法,或称带余除法.记为
a÷b=q(余r)或a÷b=q…r
读作“a除以b商q余r”,其中a叫做被除数,b叫做除数,q叫做不完全商(简称商),r叫做余数.
例如5÷7=0(余5),6÷6=1(余0),29÷5=5(余4).
解决有关带余问题时常用到以下结论:
(1)被除数与余数的差能被除数整除.即如果a÷b=q(余r),那么b|(a-r).
因为a÷b=q(余r),有a=bq+r,从而a-r=bq,
所以b|(a-r).
例如39÷5=7(余4),有39=5×7+4,从而39-4=5×7,所以5|(39-4)
(2)两个数分别除以某一自然数,如果所得的余数相等,那么这两个数的差一定能被这个自然数整除.即如果a1÷b=q1(余r),a2÷b=q2(余r),那么b|(a1-a2),其中a1≥a2.
因为a1÷b=q1(余r),a2÷b=q2(余r),有a1=bq1+r,a2=bq2+r,从而a1-a2=(bql+r)-(bq2+r)=b(q1-q2),所以b|(a1-a2).
例如,22÷3=7(余1),28÷3=9(余1),有22=3×7+1,28=3×9+1,从而28-22=3×9-3×7=3×(9-7),所以3|(28-22).
(3)如果两个数a1和a2除以同一个自然数b所得的余数分别为r1和r2,r1与r2的和除以b的余数是r,那么这两个数a1与a2的和除以b的余数也是r.
例如,18除以5的余数是3,24除以5的余数是4,那么(18+24)除以5的余数一定等于(3+4)除以5的余数(余2).
(4)被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数的也随着扩大(或缩小)相同的倍数.即如果a÷b=q(余r),那么(am)÷(bm)=q(余rm),(a÷m))÷(b÷m)=q(余r÷m)(其中m|a,m|b).
例如,14÷6=2(余2),那么(14×8)÷(6×8)=2(余2×8),(14÷2)÷(6÷2)=2(余2÷2).
下面讨论有关带余除法的问题.
例1节日的街上挂起了一串串的彩灯,从第一盏开始,按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,问第1996盏灯是什么颜色?
分析:因为彩灯是按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,要求第1996盏灯是什么颜色,只要用1996除以5+4+3+2的余数是几,就可判断第1996盏灯是什么颜色了.
解:1996÷(5+4+3+2)=142…4
所以第1996盏灯是红色.
例2把1至1996这1996个自然数依次写下来,得一多位数123456789101112……199419951996,试求这一多位数除以9的余数.
分析:从前面我们学习被9整除的特征知道,一个数的各个数位上的数字之和能被9整除,这个数必能被9整除.所以一个数除以9的余数,与这个数的各个数位上的数字之和除以9的余数正好相等.这样问题转化为求1至1996这1996个自然数中所有数字之和是多少,然后用这个和除以9所得的余数即为所求.
解:将0至1999这xxxx个整数一头一尾分成如下1000组:(0,1999),(l,1998),(2,1997),(3,1996),……,(997,1002),(998,1001),(999,1000).以上每一组的两数之和都是1999,并且每一组两数相加时都不进位,这样1至1999这1999个自然数的所有数字之和等于:
(1+9+9+9)×1000=28000
而1997至1999这3个自然数所有数字之和为:
1×3+9×3+9×3+7+8+9=81
所以从1至1996这1996个自然所有数字之和为:
28000-81=27919
27919÷9=3102…1
所以123456789……199419951996除以9的余数是1.
另外:因为依次写出的任意连续9个自然数所组成的位数一定能被9整除.而1至1996共有1996个连续的自然数,且1996÷9=221…7,最后7个自然数为1990,1991,1992,…1996,这7个数的所有数字之和为:
1×7+9×7+9×7+1+2+3+…+6=154
154÷9=17…1
所以123456789……199419951996这个多位数被9除余1.
为什么依次写出任意连续9个自然数所组成的多位数一定能被9整除呢?这是因为任意连续的9个自然数各数位上的数字之和除以9的余数,必是0,1,2,…,7,8这9个数,而各数位上的数字之和除以9的余数,就等于这9个数之和0+1+2+…+8除以9的余数,由于0+1+2+…+8=36能被9整除,所以任意连续的9个自然数各数位上的数字之和必能被9整除,因此任意连续9个自然数所组成的多位数必能被9整除.
分析:首先要找到最少几个8连在一起得到的自然数能被7整除,这只要直接用除法进行试验来得出.88÷7=12…4,888÷7=126…6,8888÷7=1269…5,88888÷7=12698…2,888888÷7=126984,最少6个8能被7整除,凡是6的整数倍个8均能被7整除,而1996÷6=332…4,
解:因为888888÷7=126984,1996÷6=332…4,8888÷7=1269…
例4一个数除93,254得到相同的余数,除163所得的余数比上面的余数大1,求这个数.
分析:因为这个数除93,254得到的余数相同,除163所得的余数比上面的余数大1,如果除162所得的余数应与上面的余数完全相同.这样将问题转化成相同余数的问题,根据前面结论(2)转化成整除问题,问题就可以得到解决.
解:设这个数为a,则a除93,254,162,得到相同的余数,于是有:
93=aq1+r,254=aq2+r,162=aq3+r
这样a|(254-162),a(162-93),即a是92和69的公约数,(92,69)=23,23的公约数是1,23,但a≠1,所以a=23.
例5一个自然数在1000到1200之间,且被3除余1,被5除余2,被7除余3,求这个自然数,
分析:先求出被3除余1的数,然后在其中找到除以5余2的数,最后在这些数中找出除以7余3的最小
自然数,这个数必然满足被3除余1,被5除余2,被7除余3的最小自然数.再加上3,5,7的公倍数,使得和在1000到1200之间.
解:被3除余1的数为:4,7,10,13,16,19,22,…,其中被5除余2的数为:7,22,37,52,67,…,这其中被7除3的最小自然数52,又因为[3,5,7]=105,所以所求数可表示为52+105m,m是自然数,当m=10时,52+105×10=1102即为所求.
例6如图18—1,图中是一个按一定规律排列的数表,将自然数的所有奇数排成A、B、C、D、E、F六列,问1997出现在哪一列打头字母下?
A B C D E F
1 3 5 7 9
19 17 15 13 11
21 23 25 27 29
39 37 35 33 31
41 … … … …
图18—1
分析:从数表中可以看出,每两排共10个数为一个循环周期.1997是第(1997+1)÷2=999个奇数.凡被10除余1或9在B列,被10除余2或8在C列,被10除余3或7在D列,被10除余4或6在E列,被10除余5在F列,被10整除在A列.这样很容易求出第999个奇数除以10的余数,从而得到1997在哪一列.
解:因为每两排共10个数为一个循环周期,1997是第(1997+1)÷2=999个奇数,又999÷10=99…9,所以1997在B列.有余数的除法这一试