最新范文 方案 计划 总结 报告 体会 事迹 讲话 倡议书 反思 制度 入党

外文翻译---基于DDS参数可调谐波信号发生器的研究

日期:2020-12-14  类别:最新范文  编辑:一流范文网  【下载本文Word版

外文翻译---基于DDS参数可调谐波信号发生器的研究 本文关键词:可调,外文,谐波,翻译,参数

外文翻译---基于DDS参数可调谐波信号发生器的研究 本文简介:附录AResearchofParameterAdjustableHarmonicSignalGeneratorBasedonDDSLIWeiCollegeofComputerandInformationEngineeringHohaiUniversityChangzhou,213022,China[

外文翻译---基于DDS参数可调谐波信号发生器的研究 本文内容:

附录A

Research

of

Parameter

Adjustable

Harmonic

Signal

Generator

Based

on

DDS

LI

Wei

College

of

Computer

and

Information

Engineering

Hohai

University

Changzhou,213022,China

[email protected]

ZHANG

Jinbo

College

of

Computer

and

Information

Engineering

Hohai

University

Changzhou,213022,China

[email protected]

Abstract

Harmonic

signal

generator

whose

frequency,phase

and

harmonic

proportion

are

adjustable

is

designed

for

the

detecting

equipment

of

power

system.

The

principle

of

DDS

and

the

design

requirement

are

introduced.

Then

the

algorithm

of

ROM

compression

based

on

the

symmetry

of

sine

wave

is

expounded.

Finally,using

Altera

FPGA,the

detail

design

of

the

whole

system

is

presented

and

test

waveforms

are

given.

Test

results

indicate

that

the

system

fulfils

the

design

requirements.

1.

Introduction

An

ideal

power

system

supplies

power

with

sine

wave,but

the

practical

waveform

of

power

supply

often

has

many

harmonic

components.

The

basic

reason

of

harmonic

is

that

the

power

system

supplies

power

to

the

electrical

equipment

with

nonlinear

characteristic.

These

nonlinear

loads

feed

higher

harmonic

back

to

the

power

supply,and

make

the

waveform

of

current

and

voltage

in

power

system

produce

serious

distortion.

In

the

detection

field

of

power

system,standard

signal

generators

which

can

simulate

the

power

harmonic

are

highly

needed

to

calibrate

the

power

detecting

equipment,such

as

phase

detector,PD

detector,and

so

on.

So

the

research

of

parameter

adjustable

harmonic

signal

generator

provides

the

exact

basis

for

the

stable

operation

of

power

detecting

equipment,and

has

great

economic

benefit

and

social

value.

2.

Principle

of

direct

digital

synthesis

Direct

digital

synthesis

(DDS)

is

a

new

frequency

synthesis

technology

which

directly

synthesizes

waveform

on

the

basis

of

phase.

Using

the

relationship

between

phase

and

amplitude,the

phase

of

waveform

is

segmented

and

assigned

relevant

addresses.

In

each

clock

period,these

addresses

are

extracted

and

the

relevant

amplitudes

are

sampled.

The

envelope

of

these

sampled

amplitudes

is

the

expected

waveform.

If

the

clock

frequency

is

constant,the

frequency

of

output

signal

is

adjustable

with

different

extracted

steps

of

addresses.

DDS

is

composed

of

phase

accumulator,ROM

table,DAC

and

LPF.

In

each

clock

period,the

output

of

phase

accumulator

is

accumulated

with

frequency

control

word,and

high

L-bit

of

the

output

are

used

as

address

to

query

the

ROM

table.

In

the

ROM,these

addresses

are

converted

to

the

sampled

amplitudes

of

the

expected

waveform.

Then

DAC

converts

the

sampled

amplitudes

to

ladder

wave.

In

the

LPF,the

ladder

wave

is

smoothed,and

the

output

is

the

continuous

analog

waveform.

Suppose

that

the

clock

frequency

is

fc,frequency

control

word

is

K,phase

accumulator

is

N-bit,then

output

frequency

is

fout=(K/2N)fc,frequency

resolution

is

Δfmin=fc/2N.

According

to

the

Nyquist

Sample

Criterion,output

frequency

upper

limit

is

fmax<0.5fc.

Because

of

the

non-ideal

characteristic

of

LPF,output

frequency

upper

limit

of

DDS

is

fmax=0.4fc.

3.

Scheme

design

3.1.

Design

requirements

The

goal

of

the

system

is

to

design

a

harmonic

signal

generator,whose

frequency,phase

and

harmonic

proportion

are

adjustable.

The

output

waveform

is

composed

of

fundamental

wave,3th

harmonic,5th

harmonic

and

7th

harmonic.

Frequency

resolution

is

1Hz.

The

adjustable

range

of

initial

phase

is

0~2π

and

its

resolution

is

1o.

The

adjustable

range

of

harmonic

proportion

is

0~50%

and

its

resolution

is

1%.

According

to

the

design

requirements,system

clock

frequency

is

15MHz

and

phase

accumulator

is

24-bit.

In

order

to

make

the

most

of

EAB,211×8

bits

ROM

table

is

adopted.

11-bit

phase

control

word

is

used

to

meet

the

requirement

of

initial

phase

resolution.

7-bit

proportion

control

word

is

adopted

to

realize

the

setting

of

harmonic

proportion.

3.2.

Algorithm

of

ROM

compression

As

is

known,phase

truncation

error

is

the

main

factor

of

output

waveform

distortion.

To

avoid

this,the

ROM

size

must

be

exponentially

increased,however

the

EAB

of

FPGA

is

limited.

So

the

algorithm

of

ROM

compression

based

on

the

symmetry

of

sine

wave

is

adopted

in

the

system.

Sine

wave

of

one

period

is

divided

into

4

sections:

[0~π/2]

、[π/2~π]

、[π~3π/2]

、[3π/2~2π].

Using

the

symmetry

of

sine

wave,sampled

amplitudes

of

the

first

section

are

stored

in

the

ROM

table.

By

address

conversion

and

amplitude

conversion,sampled

amplitudes

of

one

period

sine

wave

can

be

generated.

By

this

means,the

ROM

size

is

a

quarter

of

the

previous

size.

In

the

same

ROM,sampling

points

can

be

increased

by

4

times

with

this

method.

Sampled

amplitudes

of

quarter

wave

are

stored

in

the

ROM

table.

The

output

address

of

phase

accumulator

is

(L+2)-bit.

The

low

L-bit

are

used

to

query

the

ROM

table

while

the

high

2-bit

are

used

to

identify

phase

sections.

When

the

highest

bit

is

1,the

output

of

ROM

table

should

be

symmetrically

converted

by

the

amplitude

convertor.

When

the

second

highest

bit

is

1,the

L-bit

address

should

be

symmetrically

converted

by

the

address

convertor.

4.

System

design

based

on

FPGA

The

system

can

be

divided

into

two

function

modules:

sine

wave

generation

module

and

harmonic

synthesis

module.

Sine

wave

generation

module

is

the

key

part

of

the

system.

It

can

be

divided

into

phase

accumulator

module

and

ROM

compression

module

.

Altera

FPGA

EP2C5Q208C8

is

adopted

as

the

core

component

of

the

system.

VHDL

is

used

to

program

the

whole

system.

Compilation

and

simulation

are

implemented

in

Quartus

Ⅱ.

4.1.

Sine

wave

generation

module

phase

accumulator

module

is

composed

of

24-bit

accumulator

and

11-bit

adder.

Under

the

control

of

system

clock,the

output

of

24-bit

accumulator

is

accumulated

with

9-bit

frequency

control

word.

Then

11-bit

adder

adds

11-bit

phase

control

word

to

the

output

of

accumulator.

High

13-bit

of

the

final

result

are

used

as

address

to

query

the

ROM

compression

module.

ROM

compression

module

is

composed

of

address

convertor,amplitude

convertor

and

ROM

table.

13-bit

address

of

phase

accumulator

module

is

divided

into

three

parts.

The

highest

bit

is

used

as

trigger

signal

of

the

amplitude

convertor.

The

second

highest

bit

is

used

as

trigger

signal

of

the

address

convertor.

The

low

11-bit

are

used

to

query

the

ROM

table.

Then

sampled

amplitudes

of

sine

wave

are

generated.

Simulation

result

of

sine

wave

generation

module

is

shown

in

Fig.4.

Frequency

control

word

is

set

as

50

while

phase

control

word

is

set

as

180.

When

the

enable

signal

is

turned

into

low

level,the

first

output

value

is

the

waveform

data

of

address

180

in

the

ROM

table.

With

each

rising

edge

of

system

clock,the

waveform

data

of

address

180,181,182,183

are

sent

out.

The

output

values

are

respectively

76,76,77,77.

4.2.

Harmonic

synthesis

module

Harmonic

synthesis

module

implements

the

synthesis

of

fundamental

wave,3th

harmonic,5th

harmonic

and

7th

harmonic.

The

3th,5th

and

7th

harmonic

data

are

respectively

multiplied

by

their

proportion

control

words.

Then

the

results

of

multiplication

are

added

to

the

fundamental

wave

data.

The

realization

of

multiplication

is

the

emphasis

of

the

module.

Because

it

is

difficult

to

implement

the

multiplication

of

floating-point

format

on

FPGA,harmonic

proportion

is

divided

into

numerator

and

denominator.

The

numerator

is

defined

as

proportion

control

word

while

the

denominator

is

100.

Firstly,harmonic

data

is

multiplied

by

the

proportion

control

word

in

the

multiplier.

Then,the

product

of

multiplier

is

divided

by

100

in

the

divider.

Finally,the

remainder

is

excluded

and

the

quotient

is

preserved.

Using

Altera

IP

tools,the

multiplier

and

the

divider

of

harmonic

synthesis

module

are

realized.

Block

diagram

of

harmonic

synthesis

module

is

shown.

Simulation

result

of

harmonic

synthesis

module

is.

Control

words

are

set

before

2.0ms.

Fundamental

wave

frequency

is

50Hz,and

its

initial

phase

is

0o.

The

3th

harmonic

frequency

is

150Hz,initial

phase

is

45o

and

proportion

is

50%.

The

5th

harmonic

frequency

is

250Hz,initial

phase

is

90o

and

proportion

is

25%.

The

7th

harmonic

frequency

is

350Hz,initial

phase

is

135o

and

proportion

is

17%.

When

enable

signal

is

turned

into

low

level,harmonic

synthesis

module

begins

to

generate

the

harmonic

synthesis

data.

5.

Test

results

Figure

7.

Two-channel

sine

waves

(frequency

is

50Hz

and

phase

difference

is

180o)

Figure

8.

Two-channel

sine

waves

(frequency

is

50Hz

and

phase

difference

is

120o)

Figure

9.

Harmonic

synthesis

waveform

After

the

design

of

the

system,the

whole

function

is

tested.

Fig.7

shows

two-channel

sine

waves

whose

frequency

is

50Hz

and

phase

difference

is

180o.

Fig.8

shows

two-channel

sine

waves

whose

frequency

is

50Hz

and

phase

difference

is

120o.

Fig.9

shows

the

harmonic

synthesis

waveform,whose

fundamental

wave

proportion

is

100%,3th

harmonic

proportion

is

25%,and

5th

harmonic

proportion

is

10%.

Test

waveforms

indicate

that

the

parameter

adjustable

harmonic

signal

generator

fulfils

the

design

requirements.

6.

Conclusion

In

the

detection

field

of

power

system,standard

signal

generators

which

can

simulate

the

power

harmonic

are

highly

needed

to

calibrate

the

power

detecting

equipment.

To

solve

this

problem,a

harmonic

signal

generator

whose

frequency,phase

and

harmonic

proportion

are

adjustable

is

presented.

Using

Altera

FPGA,the

whole

system

is

implemented.

Test

results

indicate

that

the

adjustment

and

stabilization

precision

of

parameters

meet

the

design

requirements.

This

subject

provides

the

exact

basis

for

the

stable

operation

of

power

detecting

equipment,and

has

great

economic

benefit

and

social

value.

References

[1]

Li

Xiaoming

and

Qu

xiujie,“Application

of

DDS/FPGA

in

Signal

Generator

Systems”,Modern

Electronics

Technique,2006:78-79.

[2]

Yu

Yong

and

Zheng

Xiaolin,“Design

and

Implementation

of

Direct

Digital

Frequency

Synthesis

Sine

Wave

Generator

Based

on

FPGA”,Journal

of

Electron

Devices,2005:596-599.

[3]

M.A.

Taslakow,“Direct

Digital

Synthesizer

with

improved

spectrum

at

low

frequencies”,2000

IEEE/EIA

International

Frequency

Control

Symposium

and

Exhibition,2000:280-284.

[4]

Yang

Li

and

Li

Zhen,“Multi-wave

shape

Signal

Generator

Based

on

FPGA”,Radio

Engineering,2005:46-48.

[5]

D.J.

Betowski

and

V.

Beiu,“Considerations

for

phase

accumulator

design

for

Direct

Digital

Frequency

Synthesizers”,IEEE

International

Conference

on

Neural

Networks

and

Signal

Processing,2003:176-179.

[6]

J.

Vankka,“Methods

of

mapping

from

phase

to

sine

in

Direct

Digital

Synthesis”,1996

IEEE

International

Frequency

Control

Symposium,1996:942-950.

[7]

K.A.

Essenwanger

and

V.S.

Reinhardt,“Sine

output

DDSs

A

survey

of

the

state

of

the

art”,1998

IEEE

International

Frequency

Control

Symposium,1998:370-376.

附录B

基于DDS参数可调谐波信号发生器的研究

李炜

学院计算机与信息工程河海大学

常州,

213022

,中国[email protected]

张金波

学院计算机与信息工程河海大学

常州,

213022

,中国[email protected]

摘要

谐波信号发生器的频率,相位和谐波比例可调的目的是为检测设备的电源系统。介绍了DDS的原理和设计要求。然后在ROM的压缩算法的基础上阐述了正弦波的对称性。最后,利用Altera的FPGA详细的设计了整个系统,并给出了测试波形。实验结果表明,该系统满足了设计要求。

1简介

一个理想的电力系统是正弦波供电,但实际波形电源往往有许多谐波成分。产生谐波的基本原因是电力系统供电的电气设备的非线性特性。这些非线性负载依靠高次谐波回到电源,使波形的电流和电压的电力系统产生严重的失真。在电力系统的检测领域,标准信号发生器可以模拟电力谐波非常需要标定功率检测设备,如相位检测器,局部放电检测仪,等等。因此,为参数可调谐波信号发生器的研究提供准确的依据和稳定运行的电力检测设备,并具有很大的经济利益和社会价值。

2直接数字频率合成的原理

直接数字合成(

DDS

)是一种在相位的基础上直接合成波形的新的频率合成技术,利用相位和振幅之间的关系,对相位的波形分割和分配有关的地址。在每一个时钟周期,提取这些地址和有关振幅采样。系统中这些被抽样幅度是预期的波形。如果时钟频率是恒定的,频率可调输出信号的地址可有不同提取步骤。

直接数字频率合成器由累加器,存储器,

DAC和低通滤波器组成。在每一个时钟周期,输出相位累加器是由频率控制字累计,高左旋位输出作为地址查询存储器。在ROM中,这些地址被转换为预期波形的抽样振幅。然后数模转换器转换采样振幅为阶梯波。在低通滤波器,平滑阶梯波,输出的是连续的模拟波形。

假设时钟频率是fc,频率控制字为K

,相位累加器为N位,则输出频率fout

=

K/2N

)fc,频率分辨率是Δfmin

=

fc/2N

。根据奈奎斯特采样标准,输出频率上限是fmax<0.5fc

。由于非理想特性的低通滤波器,DDS的输出频率上限的是fmax

=

0.4fc。

3方案设计

3.1设计要求

该系统的目标是设计一个谐波信号发生器,其频率相位和谐波比例可调。输出波形是由基波,第三谐波,第五次谐波和第七次谐波构成。频率分辨率是1赫兹。可调范围的初始阶段为0~2π,其图形分辨率为1。可调范围的谐波比例为0~50%,其图形分辨率是1%。根据设计要求,系统时钟频率是15MHz,相位累加器是24位。为了产生最多的EAB,采用211×8位ROM。11位相位控制字是用来满足初始阶段的图形分辨率。7位比例控制字采用正确设定的谐波比例。

3.2ROM的算法

正如人们所知,相位截断误差的主要因素是输出波形畸变。为避免出现这种情况,ROM大小必须成倍增加,但EAB的FPGA是有限的。因此,该算法压缩的ROM基于系统中正弦波的对称性。正弦波一期分为4个部分:[0~π/2],[π/2~

π],[π~3π/2],[3π/2~2π]。使用对称的正弦波,取样振幅的第一部分都存储在ROM。通过地址转换和振幅转换,一期正弦波的采样振幅可以生成。通过这一手段,ROM大小是之前大小的四分之一。在相同的ROM中应用这种方法,采样点可提高4倍。

采样波振幅分块存储在ROM中。输出相位累加器地址是(L+2)-bit。低左旋位是用来查询表的ROM,而高2位是用来识别阶段部分。当最高位为1

,输出的ROM表为对称转换的幅度变换器。当第二个最高位是1

,L型位地址为对称转换的地址转换。

4基于FPGA的系统设计

该系统可分为两个功能模块:正弦波代模块和谐波合成模块。正弦波代模块是系统中关键的部分。它可分为阶段累加器模块和ROM压缩模块。Altera的FPGA

EP2C5Q208C8是该系统的核心组成部分,VHDL语言用来设计整个系统。汇编和仿真使用Quartus

实现。

4.1正弦波生成模块

相位累加器模块由24位累加器和11位加法器组成的。系统时钟所控制的是9位频率控制字与24位累加器的相加的输出。然后11位相位控制字增加了11位加法器和累加器的输出。高13位的最后结果被用作处理查询正弦数据查询ROM模块。正弦数据查询ROM模块是由地址转换,振幅转换器和ROM模块组成的。13位地址相位累加器模块分为三部分。最高位被用作触发信号的幅度变换器。第二个最高位被用作触发信号的地址转换。低11位是用来查询正弦数据查询ROM模块。然后取样振幅产生正弦波。正弦波信号发生器模块的仿真结果正确。频率控制字设置为50,而相位控制字设置为180。当时钟控制信号变成低电平时,第一个产生数值是ROM模块中地址为180时所对应的正弦波的值。系统时钟的每个上升沿产生波形数据地址所对应的180,181,182,183。其产生的数值分别为76,76,77,77。

4.2谐波合成模块

谐波合成模块完成的是基波,第三次谐波,第五次谐波和第七次谐波的合成。第三次,第五次和第七次谐波数据分别乘以其比例控制字。然后其相乘的结果再加上基波数据。其结果实现的是增强电路模块。因为基于FPGA很难实施多元化的浮点格式,调和比例的划分结果分为分子和分母。分子被定义为比例控制字而分母为100。首先,谐波的数据是乘以这个比例控制字的乘数。然后,这个相乘后的结果再在触发其里除以100。最后,剩下的是余数和商被保存了下来。使用Altera

IP工具、乘法器和除法来实现器谐波合成模块。框图的谐波合成将被显示。谐波合成模块的仿真结果正确。使用2.0ms以内的控制字的话。基波的频率为50赫兹,其初始相位是0度。第三次谐波频率为150赫兹,其初始相位是45度和比例为50%。第五次谐波频率是250赫兹,其初始相位是90度和比例是25%。第七次谐波频率是350Hz,其初始相位是135度和比例是17%。当时钟控制信号转变成低电平时,谐波合成模块开始产生所合成的谐波的数据。

5测试结果

经过系统的设计,整体功能的测试。图7显示双通道正弦波,其频率为50赫兹和相位差是180度。图8显示双通道正弦波,其频率为50赫兹和相位差是120度。图9显示了谐波合成波形,其基波比例为100%,第三谐波的比例是25%,和第5次谐波的比例是10%。试验表明,波形参数可调谐波信号发生器满足了设计要求。

7

双通道正弦波(频率

50,相位差是180o

8

双通道正弦波(频率

50,相位差是120o

图9

谐波合成波形

6结论

在电力系统的检测领域,标准信号发生器模拟电力谐波非常精确的标定功率检测设备。为了解决这个问题,介绍了一种频率,相位和谐波比例可调的谐波信号发生器。利用Altera的FPGA实现了整个系统的实施。试验结果表明,调整和稳定精度的参数达到设计要求。这一主题提供了准确的依据,稳定运行的电力检测设备,具有强大的经济利益和社会价值。

参考文献

[

1

]李晓明,曲秀杰,“DDS/FPGA在信号发生器的系统的应用”,现代电子技术,2006年:78-79

[

2

]于育,郑小琳,“基于FPGA的直接数字频率合成正弦波发生器的设计与实现”,电子器件杂志,2005年:596-599

[

3

]M.A.

Taslakow,“改进频谱低频的直接数字频率合成器”,2000年的IEEE

/频率控制的环境影响评估国际研讨会及展览,

2000年:280-284

[

4

]杨力,李镇,“多波形信号发生器的FPGA实现”,无线电工程系,

2005年:46-48

[

5

]

D.J.

Betowski,

V.

Beiu,“思考阶段累加器设计直接数字频率合成器”,IEEE国际会议的神经网络和信号处理,2003年:176-179

[

6

]

J.

Vankka,“以正弦波直接数字频率合成方法测绘阶段”,1996年IEEE国际频率控制专题讨论会,1996年:942-950

[

7

]

K.A.

Essenwanger,

V.S.

Reinhardt,“正弦输出统计局的调查,国家的艺术”,1998年IEEE国际频率控制专题讨论会,1998年:370-376

    以上《外文翻译---基于DDS参数可调谐波信号发生器的研究》范文由一流范文网精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »一流范文网»最新范文»外文翻译---基于DDS参数可调谐波信号发生器的研究
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 一流范文网 如对《外文翻译---基于DDS参数可调谐波信号发生器的研究》有疑问请及时反馈。All Rights Reserved