最新范文 方案 计划 总结 报告 体会 事迹 讲话 倡议书 反思 制度 入党

材料力学题库

日期:2021-01-17  类别:最新范文  编辑:一流范文网  【下载本文Word版

材料力学题库 本文关键词:材料力学,题库

材料力学题库 本文简介:第8章压杆稳定一、选择题1、长方形截面细长压杆,b/h=1/2;如果将b改为h后仍为细长杆,临界力Fcr是原来的多少倍?有四种答案,正确答案是(C)。(A)2倍;(B)4倍;(C)8倍;(D)16倍。解答:因为,2、压杆下端固定,上端与水平弹簧相连,如图,则压杆长度系数的范围有四种答案,正确答案是(

材料力学题库 本文内容:

第8章

压杆稳定

一、选择题

1、长方形截面细长压杆,b/h=1/2;如果将b改为h后仍为细长杆,临界力Fcr是原来的多少倍?有四种答案,正确答案是(C)。

(A)2倍;(B)4倍;(C)8倍;(D)16倍。

解答:因为,

2、压杆下端固定,上端与水平弹簧相连,如图,则压杆长度系数的范围有四种答案,正确答案是(D)。

(A);(B);(C);(D)。

3、图示中心受压杆(a)、(b)、(c)、(d)。其材料、长度及抗弯刚度相同。两两对比。临界力相互关系有四种答案,正确答案是(C)。

(A)(Fcr)a

>

(Fcr)b,(Fcr)c

(Fcr)d;

(C)(Fcr)a

>

(Fcr)b,(Fcr)c

>

(Fcr)d;(D)(Fcr)a

<

(Fcr)b,(Fcr)c

<

(Fcr)d。

4、图示(a)、(b)两细长压杆材料及尺寸均相同,压力F由零以同样速度缓慢增加,则失稳先后有四种答案,正确答案是(B)。

(A)(a)杆先失稳;

(B)(b)杆先失稳;

(C)(a)、(b)杆同时失稳;(D)无法比较。

5、细长压杆,若其长度系数增加一倍,则压杆临界力Fcr的变化有四种答案,正确答案是(C)。

(A)增加一倍;

(B)为原来的四倍;

(C)为原来的四分之一;(D)为原来的二分之一。

解答:

6、两端球铰的正方形截面压杆,当失稳时,截面将绕哪个轴转动,有四种答案,正确答案是(D)。

(A)绕y轴弯曲;(B)绕z1轴弯曲;

(C)绕z轴弯曲;(D)可绕过形心C的任何轴弯曲。

7、正方形截面杆,横截面边长a和杆长l成比例增加,它的长细比有四种答案,正确答案是(B)。

(A)成比例增加;(B)保持不变;(C)按变化;(D)按变化。

8、若压杆在两个方向上的约束情况不同,且。那么该压杆的合理截面应满足的条件有四种答案,正确答案是(D)。

(A);(B);(C);(D)。

9、两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系有四种答案,正确答案是(B)。

(A)=;

(B)=2

(C)=/

2;(D)=3

10、两根中心受压杆的材料和支承情况相同,若两杆的所有尺寸均成比例,即彼此几何相似,则两杆临界应力比较有四种答案,正确答案是(A)。

(A)相等;

(B)不等;

(C)只有两杆均为细长杆时,才相等;(D)只有两杆均非细长杆时,才相等;

11、如果细长压杆有局部削弱,削弱部分对压杆的影响有四种答案,正确答案是(D)。

(A)对稳定性和强度都有影响;

(B)对稳定性和强度都没有影响;

(C)对稳定性有影响,对强度没影响;(D)对稳定性没影响,对强度有影响。

12、细长压杆两端在x-y、x-z平面内的约束条件相同,为稳定承载能力,对横截面积相等的同一种材料,合理的截面形式有四种答案,正确答案是(C)。

(A)选(a)组;(B)选(b)组;

(C)选(c)组;(D)(a)、(b)、(c)各组都一样;

二、填空题

理想压杆的条件是①

压力作用线与杆轴重合;②

材质均匀;③无初曲率。

2、非细长杆如果误用了欧拉公式计算临界力,其结果比实际大(危险);横截面上的正应力有可能超过比例极限

3、将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将

降低

,临界应力将

增大

4、两根材料和约束均相同的圆截面细长压杆,l2=2l1,若两杆的临界压力相等,则d1

/

d2=

5、三种不同截面形状的细长压杆如图所示。试标出压杆失稳时各截面将绕哪根形心主轴转动。(a)

绕过形心的任意轴;(b)

y轴

;(c)

y轴

6、当压杆有局部削弱时,因局部削弱对杆件整体变形的影响

很小

;所以在计算临界应力时都采用

削弱前

的横截面面积A和惯性矩I。

7、提高压杆稳定性的措施有①

减小压杆长度;②

强化约束或增加约束数;③

选择合理载荷;④

选用合理材料

三、计算题

1、桁架ABC由两根具有相同截面形状和尺寸以及同样材料的细长杆组成。确定使载荷F为最大时的角(设)。

解答:1)由节点B的平衡有:,2)设,则,

经分析,只有当AB杆和BC杆的内力都达到临界力时,F才有最大值,即:,又

3)综合两式可得,

即:

可解得

2、角钢长3m,两端固定,受轴向压力。已知,,,E=200GPa,求该细长压杆的临界载荷Fcr(图中C为截面形心)。

解答:

3、图示结构,各杆均为细长圆杆,且E、d均相同,求F的临界值。

解答:各杆内力:(压),(拉)

分析AB、BC、CD、DA杆受压存在稳定性问题,BD杆受拉,不存在稳定;

当AB、BC、CD、DA四杆失稳时,F达到峰值,故有:

故F的峰值:

4、图中的1、2杆材料相同,均为圆截面压杆,若使两杆的临界应力相等。试求两杆的直径之比d1

/

d2,以及临界力之比(Fcr)1

/

(Fcr)2。并指出哪根杆的稳定性好。

解答:由临界应力总图可知,相同,则值相同,

对1杆,

对2杆,

故:

,即2杆稳定性好些。

5、图中AB为刚体,圆截面细长杆1、2两端约束、材料、长度均相同,若在载荷Fcr作用下,两杆都正好处于临界状态,求两杆直径之比d2

/

d1。

解答:1)画变形图,受力图如图:

2)两杆都正好处于临界状态,有变形协调条件:

,得

两杆都处于临界状态时,

两杆都正好处于临界状态条件:

即,

6、图示压杆,AC、CB两杆均为细长压杆,问x为多大时,承载能力最大?并求此时承载能力与C处不加支撑时承载能力的比值。

解答:1)承载能力最大的条件是AC杆和BC杆同时达到临界力,且相同

即:

即:

2)对所承载的力与C处不加支撑是承载的力的比值

7、图示1、2两杆为一串联受压结构,1杆为圆截面,直径为d;2杆为矩形截面,b=3d/2,h=d/2。1、2两杆材料相同,弹性模量为E,设两杆均为细长杆。试求此结构在xy平面内失稳能承受最大压力时杆长的比值。

解答:分析两杆在x-y平面内失稳,而能承受最大压力的条件是:

两杆同时达到临界力且相等,即

其中,

代入,可得:

可解得,

8、图示矩形截面细长压杆,下端固定,上端有一销孔,通过销轴转动。绘出xy和xz平面内压杆的两个计算简图,并求h和b的合理比值。

解答:由图可取:

在xy平面内:

在xz平面内,

则,h和b的合理比值是使:

9、图示圆截面压杆d=40mm,。求可以用经验公式(MPa)计算临界应力时的最小杆长。

解答:由于使用经验公式的最小柔度是

10、截面为矩形b×h的压杆两端用柱形铰连接(在xy平面内弯曲时,可视为两端铰支;在xz平面内弯曲时,可视为两端固定)。E=200GPa,求:

(1)当b=30mm,h=50mm时,压杆的临界载荷;

(2)若使压杆在两个平面(xy和xz平面)内失稳的可能性相同时,b和h的比值。

解答:

11、试确定图示结构中压杆BD失稳时的临界载荷F值。

已知:E=2×105MPa,。

解答:取研究对象,画受力图如图,其中BD杆受拉

对于BD杆,

代入得:

12、图示结构,E=200GPa,,求AB杆的临界应力,并根据AB杆的临界载荷的1/5确定起吊重量P的许可值。

解答:1)求AB杆的临界应力

2)由

可知:

13、图示结构,CD为刚性杆,杆AB的E=200GPa,,,经验公式(MPa),求使结构失稳的最小载荷F。

解答:

对于AB杆,

故AB杆为中柔度杆。

故使结构失稳的最小载荷是

14、校核两端固定矩形截面压杆的稳定性。已知l=3m,F=100kN,b=40mm,h=60mm。材料的弹性模量E=200GPa,,稳定安全因数nst=3。

解答:

故压杆不符合稳定条件。

15、图示结构中,二杆直径相同d=40mm,,,临界应力的经验公式为(MPa),稳定安全因数nst=2.4,试校核压杆的稳定性。

解答:由三角形法则可知,两杆压力

又压杆

故压杆稳定。

16、图示结构,由Q235钢制成,[σ]=160MPa,斜撑杆外径D=45mm,内径d=36mm,nst=3,斜撑杆的,,中长柱的(MPa),试由压杆的稳定计算,确定结构的许用载荷[F

]。

解答:1)对结构进行受力分析:

2)对BD杆,

3)由1)可知,

17、钢杆的尺寸、受力和支座情况如图所示。已知材料的E=200GPa,,,直线公式的系数a=304MPa,b=1.12MPa,试求其工作安全因数。

18、图示结构,尺寸如图所示,立柱为圆截面,材料的E=200GPa,。若稳定安全因数nst=2,试校核立柱的稳定性。

解答:1)取研究对象如图,算工作压力

2)求

故立柱满足稳定条件。

19、图示结构,1、2杆均为圆截面,直径相同,d=40mm,弹性模量E=200GPa,材料的许用应力[]=120MPa,适用欧拉公式的临界柔度为90,并规定安全因数nst=2,试求许可载荷[F

]。

解答:1)由节点B的平衡得:

2)杆1受拉为强度问题。

由杆1的强度条件

3)对于2杆,

故2杆为细长杆且受压,故为稳定问题。

故2杆工作压力

故取绝对值,

比较可得:

20、图示由五根圆形钢杆组成的正方形结构,连接处为铰结,各杆直径均为d=40mm,材料为A3钢,[]=160MPa

,求许可载荷[F]。

解答:由节点法求得各杆内力如图

对于AB、BC、CD、DA杆:

查表可得

由稳定条件AB、BC、CD、DA四杆为稳定问题。

对于BD杆,因受拉,故为强度问题。

由具强度条件:

比较可得:

篇2:材料力学选择题

材料力学选择题 本文关键词:材料力学,选择题

材料力学选择题 本文简介:二、选择题1.根据各向同性假设可认为下列各量中的某一量在各方面都相同的是__________A.应力B.材料的弹性模量C.应变D.位移标准答案B答题时间2难易级别12.图示结构中,杆1发生_______变形,杆2发生________变形,杆3发生________变形A拉伸B弯曲C压缩D不变形标准答案

材料力学选择题 本文内容:

二、选择题

1.

根据各向同性假设可认为下列各量中的某一量在各方面都相同的是__________

A.

应力

B.

材料的弹性模量

C.

应变

D.

位移

标准答案B

答题时间2

难易级别1

2.

图示结构中,杆1发生_______变形,杆2发生________变形,杆3发生________

变形

A拉伸

B弯曲

C压缩

D不变形

标准答案A、C、B

答题时间3

难易级别2

3.

关于确定截面内力的截面法的应用范围,正确答案是________

(A)

适用于等截面杆。

(B)适用于直杆承受基本变形

(C)适用于不论基本变形还是组合变形,但不限直杆的横截面

(D)适用于不论等截面或变截面,直杆或曲杆,基本变形或组合变形,横截面或任意截面的普遍情况

标准答案D

答题时间4

难易级别2

4.

拉(压)杆应力公式σ=N/A的应力条件是_______

(A)

应力在比例极限内

(B)外力合力作用线必须沿着杆的轴线

(C)应力应在屈服极限内

(D)杆件必须为矩形截面杆

标准答案B

答题时间3

难易级别2

5.

作为塑料材料的极限应力是_______

A:

比例极限

B:

弹性极限

C:

屈服极限

D:

强度极限

标准答案C

答题时间2

难易级别2

6.

如图所示为同材料的等截面直杆,试判断变形过程中,B,C二截面的位置变化.________

a)

截面C向右移动,截面B向左移动

b)

截面C不动,截面B向左移动

c)

截面BC向左移动

d)

截面B不动,截面C向右移动

标准答案B

答题时间2

难易级别1

7.

甲已两杆几何尺寸相同,轴向拉力P相同,材料不同,他们的应力和变形有四种可能:其中正确的是________

A:

应力σ和Δl都相同

B:

应力σ不同,变形Δl相同

C:

应力σ和相同,变形Δl不同

D:

应力σ不同,变形Δl不同

标准答案C

答题时间2

难易级别2

8.

直径为d的圆截面钢材受轴向拉力作用已知其中纵线应变为ε,弹性模量为E,则杆的轴力为___________

A:

πd2ε/4E

B:

πd2E/4ε

c:4Eε/πd2

D:

πd2Eε/4

标准答案D

答题时间2

难易级别2

9.

单位宽度的薄壁圆环受力如图所示,p为径向压强,其n-n截面上的内力N有四种答案

A:

PD

B:

PD/2

C:

PD/4

D:

PD/8

其中正确答案是

:__________

标准答案B

答题时间2

难易级别2

10.

将如图所示的直杆横截面A增大一倍,p不变,则关于变换前后的应力与轴力下述中正确的是_________

A:

轴力不变,应力不变

B:

轴力减少1/2,应力减少1/2

C:

轴力减少1/2,应力不变

D:

轴力不变,应力减少1/2

标准答案D

答题时间2

难易级别2

11.

目前的一般机械制造中,塑料材料的安全系数一般________脆性材料的安全系数。

A

小于

B

大于

C

等于

D无法比较

标准答案A

答题时间1

难易级别1

12.

下列材料中,对应力集中的敏感程度最严重的是__________

A

B

C铝

D铸铁

标准答案D

答题时间3

难易级别2

13.

低碳钢拉伸经过冷作硬化后,以下四种指标中那种得到提高:

A

强度极限

B比例极限

C

断面收缩率

D

伸长率(延伸率)

标准答案B

答题时间3

难易级别2

14.

轴向拉伸(压缩)时,在杆件的横截面上,正应力为________值;在与杆件轴线方向45°的斜截面上,剪应力为

_______值。

A:

最大

B:

最小

C:

不能确定

D:为零

标准答案A、A

答题时间3

难易级别2

max

15.

一弯曲等截面直杆,横截面积为A,截面m-m的外向法线n与n的夹角为α。试问α位多大时,m-m截面上剪应力最大?该截面上剪应力与正应力分别为多少______

A:

α=-45°

=p/A

σ=p/2A

max

max

B:

α=45°

=p/A

σ=p/2A

max

C:

α=45°

=p/A

σ=p/2A

D:

α=45°

=p/2A

σ=p/A

标准答案B

答题时间3

难易级别2

16.

关于下列结论

1.

应变分为线应变和角应变

2.

应变为无量刚量

3.

若物体各部分均无变形则物体各点的应变为零

4.

若物体内各点的应变为零,则物体无位移

现有四种答案

A:

1.2对

B:

3.4对

C:

1.2.3对

D:

全对

正确的是:_____________

标准答案C

答题时间3

难易级别3

17.

关于下列结论的正确性正确答案是_____________

A:

同一截面上正应力σ与剪应力τ必相互垂直

B:

同一截面上各点的正应力σ必大小相等,方向相同

C:

同一截面上各点的剪应力τ必相互平行

标准答案A

答题时间2

难易级别2

18.

图示结构中,其中AD杆发生的变形为:__________

A:

弯曲变形

B:

压缩变形

C

:

弯曲和压缩变形

D:

弯曲和拉伸变形

标准答案C

答题时间2

难易级别1

19.

如图所示台阶轴,横截面积为A1,A2,材料均匀,许用应力为[α],受力如图所示,则强度较核正确的是__________

A:

2P/A1+A20

δ20

δ2│δ3│

标准答案C

答题时间2

难易级别2

47.

矩形简支梁受力如图a所示,横截面各点的应力状态如图b所示,关于他们的正确性,现有四种答案

A点1,2的应力状态是正确的

B点2,3的应力状态是正确的

C点3,4的应力状态是正确的

D点1,5的应力状态是正确的

正确答案是__________

标准答案D

答题时间3

难易级别1

48.

关于图示梁上的a点的应力状态有下列四种答案,正确的是______________

标准答案D

答题时间2

难易级别2

49.

广义胡克定律的适用范围有下列四种答案,其中正确的是__________________

A:

在小变形范围内

B:

在屈服极限范围内

C:

在比例极限范围内

D:

在强度极限范围内

标准答案C

答题时间1

难易级别1

1/2

1/2

50.

图示单元体所示的应力状态,按第四强度理论,其相当应力δr4为___________

A3δ/2

B:

C7

δ/2

D5

δ/2

标准答案C

答题时间1

难易级别1

51.

铸件构件受力如图所示,其危险的位置有四种答案,正确的是___________

A1点

B2点

C3点

D4点

标准答案D

答题时间2

难易级别1

52.

图示结构的静不定系数为___________

A一次

B二次

C三次

D四次

标准答案A

答题时间2

难易级别1

54.

对图示梁,给有四个答案,正确的是______________

A静定梁

B一次静不定梁

C二次静不定梁

D;三次静不定梁

标准答案C

答题时间2

难易级别1

55.

三种受压杆件如图,设杆1,2,3中的最大压应力(绝对值)分别为δmax1,δmax2,δmax3,现有四种答案,正确的是___________

A:

δmax1=δmax2=δmax3

B:

δmax1>δmax2=δmax3

C:

δmax2>δmax1

=δmax3

D:

δmax2N3

C:N2=N3

D:N2=2N3

标准答案C

答题时间2

难易级别2

61.

公式dφ/dσ=τ/GIP的使用条件有四种答案,其中正确的是_________

A:圆截面扭转,变形在线弹性范围内

B:圆截面杆扭转,任意变形范围内

C:任意截面扭转,线弹性变形

D:矩形截面杆扭转

标准答案A

答题时间3

难易级别2

62.

已知梁的EI为常数,今欲使梁的挠曲线在x=l/3处出现一拐点,则比值m1/m2为_______

A:

m1/m2=2

B:

m1/m2=3

C:

m1/m2=1/2

D:

m1/m2=1/3

标准答案C

答题时间4

难易级别2

63.

扭转与弯曲塑性材料圆轴梁,若采用第三强度理论,其强度条件为________

A√M2+T2/w≤[σ]

B

√M2+4T2/w≤[σ]

C√M2+3T2/w≤[σ]

D

以上都不对

标准答案A

答题时间3

难易级别2

64.

若采用第四强度理论,塑性材料圆轴在扭转与弯曲组合变形下的强度条件为_______

A:

√M2+T2/w≤[σ]

B:

√M2+2T2/w≤[σ]

C:

√M2+T2/w≤[σ]

D:

√M2+0.75T2/w≤[σ]

标准答案D

答题时间2

难易级别2

65.

图所示两根相同的悬臂梁,在图a所示力偶m的作用下,AB两点的挠度和转角分别为fAa,fBa,QAa,QBa;在图b所示的力偶m的作用下,A,B两点的挠度和转角分别为fAb,fBb,QAb,QBb;下列关系式正确的是哪一个____________

A:

fAa=fBb

B:

QAa=QBb

C:

QBa=

QAb

D:

fBa=fAb

标准答案B

答题时间2

难易级别1

66.

图示梁的最大挠度是_____________

A:

-ml/EI

B:

-ml2/2EI

C:

ml/EI

D:

ml2/2EI

标准答案B

答题时间4

难易级别2

67.

测定材料力学性能的基本实验为___________

A:

变温静载实验

B常温动载实验

C常温静载实验

D变温动载实验

标准答案C

答题时间2

难易级别1

68.

试样的横向尺寸有明显缩小的阶段是_________

A:

弹性阶段

B屈服阶段

C强化阶段

D:以上都不对

标准答案C

答题时间3

难易级别1

69.

下列对于安全系数的有关叙述正确的是__________

A:

安全系数可小于1

B安全系数取得越大越好

C:

以上说法都不对

D:

安全系数为大于1的数

标准答案D

答题时间3

难易级别2

70.

图示二梁抗弯刚度EI相同,截荷q相同,则下列四种关系中正确的是_________

A:

二梁对应点的内力和位移相同

B:

二梁对应点的内力和位移不同

C:

内力相同,位移不同

D:

内力不同,位移相同

标准答案C

答题时间2

难易级别1

71.

若图示梁中间铰C的挠度为零,则a=___________

A:

L/2

B:

L/3

C:

L/4

D:

L/5

标准答案C

答题时间2

难易级别2

72.

列关于内力的说法正确的是___________

1.

内力是成对出现,大小相同,方向相反

2.

内力是连续分布的

3.

求内力的基本方法是截面法

A

1、2

B

1、2、3

C

2、3

D全部不正确

标准答案B

答题时间2

难易级别1

73.

下列关于应变的说法不正确的是__________

A:夹角的改变量γ称为静应变

B:角的改变量与原角的比值称为角应变

C:角应变没有量纲

D:角应变用纵度表示

标准答案B

答题时间3

难易级别2

74.

下列说法正确的是:________________

A:对受弯曲的梁来说,一般弯矩是主要的,所以无论强度较核还是设计截面,首先按正应力强度条件进行,然后进行剪应力较核

B:对塑性材料而言,由于材料的抗拉和抗压的性能相同,即拉伸的流动极限和压缩的流动极限相等,因此对等截面直梁来说,危险截面仅一个,即[m]max所在截面

C:对脆性材料来说,由于材料的拉伸强度极限和强度不相等,因此,对等截面直梁来说,危险面有二个,正弯矩最大的截面和负弯矩最大的截面

D:直梁的正应力公式适用任何情况

标准答案D

答题时间3

难易级别2

75.

图示刚架的静不定次数为________________

A:1

B:2

C:3

D:4

标准答案D

答题时间3

难易级别2

76.

下列关于扭转的刚度条件正确的是_____________

A:

ψmax=τmax/GIP×180/π≤[ψ]rad/m

B:

ψmax=τmax/GIP×180o/π≤[ψ]o/m

C:

ψmax=τmax/GIP×π/180o≤[ψ]o/m

D:

ψmax=τmax/GIP≤[ψ]o/m

标准答案B

答题时间2

难易级别2

77.

轴的输入功率为N千瓦,轴的转速为N转每分钟,则外力偶的计算公式为________

A:

m=9549N/M

KN.M

B:

m=9549N/M

N.M

C:

m=7024N/M

KN.M

D:

m=7024N/M

N.M

标准答案B

答题时间3

难易级别3

78.

下列措施能起到提高梁的弯曲强度的是__________

1.

合理安排梁的受力情况

2.

采用合理截面

3.

采用等强度梁

A

1,3

B:

1,2

C:1,2,3

D:全部不能

标准答案C

答题时间3

难易级别2

79.

图示悬臂梁,若分别采用两种坐标系,则由积分法求得挠度和转角的正确的是_____

A两组结果正负号完全一致

B两组结果正负号完全相反

C挠度的正负号相反,转角的正负号一致

D挠度的正负号一致,转角的正负号相反

标准答案C

答题时间2

难易级别1

80.

折杆ABC如图所示,如AB与BC互相垂直,杆的截面为圆形,在B点作用一垂直与ABC平面的力P,该杆的AB段和BC段有四种答案_______________

A:平面弯曲

B:斜弯曲

C:弯扭组合

D:拉弯组合

标准答案C

答题时间2

难易级别1

篇3:材料力学性能-第2版课后习题答案

材料力学性能-第2版课后习题答案 本文关键词:课后,习题,答案,力学性能,材料

材料力学性能-第2版课后习题答案 本文简介:第一章单向静拉伸力学性能1、解释下列名词。1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸

材料力学性能-第2版课后习题答案 本文内容:

第一章

单向静拉伸力学性能

1、

解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变

12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等

2、

说明下列力学性能指标的意义。

答:E弹性模量

G切变模量

规定残余伸长应力

屈服强度

金属材料拉伸时最大应力下的总伸长率

n

应变硬化指数

【P15】

3、

金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?

答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】

4、

试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

5、

决定金属屈服强度的因素有哪些?【P12】

答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

6、

试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】

答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

7、

剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】

答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。

8、

何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?

答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

9、

论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

答:

,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。

第二章

金属在其他静载荷下的力学性能

一、解释下列名词:

(1)应力状态软性系数——

材料或工件所承受的最大切应力τmax和最大正应力σmax比值,即:

【新书P39

旧书P46】

(2)缺口效应——

绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44

P53】

(3)缺口敏感度——缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb

的比值,称为缺口敏感度,即:

【P47

P55

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49

P58】

(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51

P60】。

(6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。【P53

P62】

(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。

(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。

(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

二、说明下列力学性能指标的意义

(1)σbc——材料的抗压强度【P41

P48】

(2)σbb——材料的抗弯强度【P42

P50】

(3)τs——材料的扭转屈服点【P44

P52】

(4)τb——材料的抗扭强度【P44

P52】

(5)σbn——材料的抗拉强度【P47

P55】

(6)NSR——材料的缺口敏感度【P47

P55】

(7)HBW——压头为硬质合金球的材料的布氏硬度【P49

P58】

(8)HRA——材料的洛氏硬度【P52

P61】

(9)HRB——材料的洛氏硬度【P52

P61】

(10)HRC——材料的洛氏硬度【P52

P61】

(11)HV——材料的维氏硬度【P53

P62】

三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。

试验方法

特点

应用范围

拉伸

温度、应力状态和加载速率确定,采用光滑圆柱试样,试验简单,应力状态软性系数较硬。

塑性变形抗力和切断强度较低的塑性材料。

压缩

应力状态软,一般都能产生塑性变形,试样常沿与轴线呈45o方向产生断裂,具有切断特征。

脆性材料,以观察脆性材料在韧性状态下所表现的力学行为。

弯曲

弯曲试样形状简单,操作方便;不存在拉伸试验时试样轴线与力偏斜问题,没有附加应力影响试验结果,可用试样弯曲挠度显示材料的塑性;弯曲试样表面应力最大,可灵敏地反映材料表面缺陷。

测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。也常用于比较和鉴别渗碳和表面淬火等化学热处理机件的质量和性能。

扭转

应力状态软性系数为0.8,比拉伸时大,易于显示金属的塑性行为;试样在整个长度上的塑性变形时均匀,没有紧缩现象,能实现大塑性变形量下的试验;较能敏感地反映出金属表面缺陷和及表面硬化层的性能;试样所承受的最大正应力与最大切应力大体相等

用来研究金属在热加工条件下的流变性能和断裂性能,评定材料的热压力加工型,并未确定生产条件下的热加工工艺参数提供依据;研究或检验热处理工件的表面质量和各种表面强化工艺的效果。

四.试述脆性材料弯曲试验的特点及其应用。

五、缺口试样拉伸时的应力分布有何特点?【P45

P53】

在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态,在板中心部位处于两向拉伸平面应力状态。厚板:在缺口根部处于两向拉应力状态,缺口内侧处三向拉伸平面应变状态。

无论脆性材料或塑性材料,都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向,降低了机件的使用安全性。为了评定不同金属材料的缺口变脆倾向,必须采用缺口试样进行静载力学性能试验。

六、试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点。

偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。该试验用于检测螺栓一类机件的安全使用性能。

光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。

缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。

偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。

七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49

P57】

原理

布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。

洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。

维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位面积所承受的试验力。

布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。

洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。

维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。

八.今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。

(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。

(1)渗碳层的硬度分布----

HK或-显微HV

(2)淬火钢-----HRC

(3)灰铸铁-----HB

(4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK

(5)仪表小黄铜齿轮-----HV

(6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度)

(7)渗氮层-----HV

(8)高速钢刀具-----HRC

(9)退火态低碳钢-----HB

(10)硬质合金-----

HRA

第三章

金属在冲击载荷下的力学性能

冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。【P57】

冲击韧度:

:U形缺口冲击吸收功

除以冲击试样缺口底部截面积所得之商,称为冲击韧度,αku=Aku/S

(J/cm2),反应了材料抵抗冲击载荷的能力,用表示。P57注释/P67

冲击吸收功:

缺口试样冲击弯曲试验中,摆锤冲断试样失去的位能为mgH1-mgH2。此即为试样变形和断裂所消耗的功,称为冲击吸收功,以表示,单位为J。P57/P67

低温脆性:

体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢(铁素体-珠光体钢),在试验温度低于某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

韧性温度储备:材料使用温度和韧脆转变温度的差值,保证材料的低温服役行为。

二、

(1)

:冲击吸收功。含义见上面。冲击吸收功不能真正代表材料的韧脆程度,但由于它们对材料内部组织变化十分敏感,而且冲击弯曲试验方法简便易行,被广泛采用。

AKV

(CVN):V型缺口试样冲击吸收功.

AKU:U型缺口冲击吸收功.

(2)FATT50:冲击试样断口分为纤维区、放射区(结晶区)与剪切唇三部分,在不同试验温度下,三个区之间的相对面积不同。温度下降,纤维区面积突然减少,结晶区面积突然增大,材料由韧变脆。通常取结晶区面积占整个断口面积50%时的温度为,并记为50%FATT,或FATT50%,t50。(新书P61,旧书P71)

或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.

(3)NDT:

以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度。

(4)FTE:

以低阶能和高阶能平均值对应的温度定义tk,记为FTE

(5)FTP:

以高阶能对应的温度为tk,记为FTP

四、试说明低温脆性的物理本质及其影响因素

低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。

从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。

影响材料低温脆性的因素有(P63,P73):

1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。

2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。

3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为

晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减

少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。

②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。

五.

试述焊接船舶比铆接船舶容易发生脆性破坏的原因。

焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料的脆性,容易发生脆性断裂。

七.

试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度,而另外一些材料则没有?

宏观上,体心立方中、低强度结构钢随温度的降低冲击功急剧下降,具有明显的韧脆转变温度。而高强度结构钢在很宽的温度范围内,冲击功都很低,没有明显的韧脆转变温度。面心立方金属及其合金一般没有韧脆转变现象。

微观上,体心立方金属中位错运动的阻力对温度变化非常敏感,位错运动阻力随温度下降而增加,在低温下,该材料处于脆性状态。而面心立方金属因位错宽度比较大,对温度不敏感,故一般不显示低温脆性。

体心立方金属的低温脆性还可能与迟屈服现象有关,对低碳钢施加一高速到高于屈服强度时,材料并不立即产生屈服,而需要经过一段孕育期(称为迟屈时间)才开始塑性变形,这种现象称为迟屈服现象。由于材料在孕育期中只产生弹性变形,没有塑性变形消耗能量,所以有利于裂纹扩展,往往表现为脆性破坏。

第四章

金属的断裂韧度

1、

名词解释

低应力脆断:高强度、超高强度钢的机件

,中低强度钢的大型、重型机件在屈服应力以下发生的断裂。

张开型(型)裂纹:

拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展的裂纹。

应力场强度因子

在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子有关,对于某一确定的点,其应力分量由确定,

越大,则应力场各点应力分量也越大,这样就可以表示应力场的强弱程度,称为应力场强度因子。

“I”表示I型裂纹。【P68】

小范围屈服:

塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小一个数量级以上),这就称为小范围屈服。【P71】

有效屈服应力:裂纹在发生屈服时的应力。【新书P73:旧P85】

有效裂纹长度:因裂纹尖端应力的分布特性,裂尖前沿产生有塑性屈服区,屈服区内松弛的应力将叠加至屈服区之外,从而使屈服区之外的应力增加,其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响,经修正后的裂纹长度即为有效裂纹长度:

a+ry。【新P74;旧P86】。

裂纹扩展K判据:裂纹在受力时只要满足

,就会发生脆性断裂.反之,即使存在裂纹,若

也不会断裂。新P71:旧83

裂纹扩展能量释放率GI:I型裂纹扩展单位面积时系统释放势能的数值。P76/P88

裂纹扩展G判据:

,当GI满足上述条件时裂纹失稳扩展断裂。P77/P89

J积分:有两种定义或表达式:一是线积分:二是形变功率差。P89/P101

裂纹扩展J判据:

,只要满足上述条件,裂纹(或构件)就会断裂。

COD:裂纹张开位移。P91/P102

COD判据:,当满足上述条件时,裂纹开始扩展。P91/P103

2、说明下列断裂韧度指标的意义及其相互关系

答:

临界或失稳状态的记作或,为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。

它们都是型裂纹的材料裂纹韧性指标,但值与试样厚度有关。当试样厚度增加,使裂纹尖端达到平面应变状态时,断裂韧度趋于一稳定的最低值,即为,它与试样厚度无关,而是真正的材料常数。P71/P82

答:P77/P89

当增加到某一临界值时,能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。将的临界值记作,称断裂韧度,表示材料阻止裂纹失稳扩展时单位面积所消耗的能量,其单位与相同,MPa·m

JIC:是材料的断裂韧度,表示材料抵抗裂纹开始扩展的能力,其单位与GIC相同。P90/P102

:是材料的断裂韧度,表示材料阻止裂纹开始扩展的能力.P91/P104

J判据和判据一样都是裂纹开始扩展的裂纹判据,而不是裂纹失稳扩展的裂纹判据。P91/P104

3、试述低应力脆断的原因及防止方法。

答:

低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件在低于屈服应力的情况发生断裂。

预防措施:将断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。

4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?

答:由4—1可知,裂纹前端的应力是一个变化复杂的多向应力,如用它直接建立裂纹扩展的应力判据,显得十分复杂和困难;而且当r→0时,不论外加平均应力如何小,裂纹尖端各应力分量均趋于无限大,构件就失去了承载能力,也就是说,只要构件一有裂纹就会破坏,这显然与实际情况不符。这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的。因此无法用应力判据处理这一问题。因此只能用其它判据来解决这一问题。

5、

试述应力场强度因子的意义及典型裂纹的表达式

答:新书P69旧书P80参看书中图(应力场强度因子的意义见上)

几种裂纹的表达式,无限大板穿透裂纹:;有限宽板穿透裂纹:;有限宽板单边直裂纹:当ba时,;受弯单边裂纹梁:;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:;无限大物体表面有半椭圆裂纹,远处均受拉伸:A点的。

6、

试述K判据的意义及用途。

答:

K判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。P71/P83

7、试述裂纹尖端塑性区产生的原因及其影响因素。

答:机件上由于存在裂纹,在裂纹尖端处产生应力集中,当σy趋于材料的屈服应力时,在裂纹尖端处便开始屈服产生塑性变形,从而形成塑性区。

影响塑性区大小的因素有:裂纹在厚板中所处的位置,板中心处于平面应变状态,塑性区较小;板表面处于平面应力状态,塑性区较大。但是无论平面应力或平面应变,塑性区宽度总是与(KIC/σs)2成正比。

8、试述塑性区对KI的影响及KI的修正方法和结果。

由于裂纹尖端塑性区的存在将会降低裂纹体的刚度,相当于裂纹长度的增加,因而影响应力场和及KI的计算,所以要对KI进行修正。

最简单而适用的修正方法是在计算KI时采用“有效裂纹尺寸”,即以虚拟有效裂纹代替实际裂纹,然后用线弹性理论所得的公式进行计算。基本思路是:塑性区松弛弹性应力的作用于裂纹长度增加松弛弹性应力的作用是等同的,从而引入“有效长度”的概念,它实际包括裂纹长度和塑性区松弛应力的作用。

(4—15)的计算结果忽略了在塑性区内应变能释放率与弹性体应变能释放率的差别,因此,只是近似结果。当塑性区小时,或塑性区周围为广大的弹性去所包围时,这种结果还是很精确。但是当塑性区较大时,即属于大范围屈服或整体屈服时,这个结果是不适用的。

11

COD的意义:表示裂纹张开位移。表达式。P91/P103

13、断裂韧度KIC与强度、塑性之间的关系:总的来说,断裂韧度随强度的升高而降低。详见新P80/P93

15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响。外因:1、温度;2、应变速率。P81/P95

16.有一大型板件,材料的σ0.2=1200MPa,KIc=115MPa*m1/2,探伤发现有20mm长的横向穿透裂纹,若在平均轴向拉应力900MPa下工作,试计算KI及塑性区宽度R0,并判断该件是否安全?

解:由题意知穿透裂纹受到的应力为σ=900MPa

根据σ/σ0.2的值,确定裂纹断裂韧度KIC是否休要修正

因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度KIC需要修正

对于无限板的中心穿透裂纹,修正后的KI为:

=

(MPa*m1/2)

塑性区宽度为:

=0.004417937(m)=

2.21(mm)

比较K1与KIc:

因为K1=168.13(MPa*m1/2)

KIc=115(MPa*m1/2)

所以:K1>KIc

,裂纹会失稳扩展,所以该件不安全。

17.有一轴件平行轴向工作应力150MPa,使用中发现横向疲劳脆性正断,断口分析表明有25mm深度的表面半椭圆疲劳区,根据裂纹a/c可以确定φ=1,测试材料的σ0.2=720MPa

,试估算材料的断裂韧度KIC为多少?

解:

因为σ/σ0.2=150/720=0.208ΔKth时,da/dN>0,疲劳裂纹才开始扩展。因此,ΔKth是疲劳裂纹不扩展的ΔK临界值,称为疲劳裂纹扩展门槛值。

3.试述金属疲劳断裂的特点

p96/p109

(1)疲劳是低应力循环延时断裂,机具有寿命的断裂

(2)疲劳是脆性断裂

(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感

4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT,旧书P109~111)

答:典型疲劳断口具有三个形貌不同的区域—疲劳源、疲劳区及瞬断区。

(1)

疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压,故显示光亮平滑,另疲劳源的贝纹线细小。

(2)

疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口比较光滑并分布有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。

(3)

瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为纤维状断口。

6.试述疲劳图的意义、建立及用途。(新书P101~102,旧书P115~117)

答:定义:疲劳图是各种循环疲劳极限的集合图,也是疲劳曲线的另一种表达形式。

意义:很多机件或构件是在不对称循环载荷下工作的,因此还需知道材料的不对称循环疲劳极限,以适应这类机件的设计和选材的需要。通常是用工程作图法,由疲劳图求得各种不对称循环的疲劳极限。

1、疲劳图

建立:这种图的纵坐标以表示,横坐标以表示。然后,以不同应力比r条件下将表示的疲劳极限分解为和,并在该坐标系中作ABC曲线,即为疲劳图。其几何关系为:

(用途):我们知道应力比r,将其代入试中,即可求得和,而后从坐标原点O引直线,令其与横坐标的夹角等于值,该直线与曲线ABC相交的交点B便是所求的点,其纵、横坐标之和,即为相应r的疲劳极限,。

2、疲劳图

建立:这种图的纵坐标以或表示,横坐标以表示。然后将不同应力比r下的疲劳极限,分别以和表示于上述坐标系中,就形成这种疲劳图。几何关系为:

(用途):我们只要知道应力比r,就可代入上试求得和,而后从坐标原点O引一直线OH,令其与横坐标的夹角等于,该直线与曲线AHC相交的交点H的纵坐标即为疲劳极限。

8.试述影响疲劳裂纹扩展速率的主要因素。(新书P107~109,旧书P123~125)

答:1、应力比r(或平均应力)的影响:Forman提出:

残余压应力因会减小r,使降低和升高,对疲劳寿命有利;而残余拉应力因会增大r,使升高和降低,对疲劳寿命不利。

2、过载峰的影响:偶然过载进入过载损伤区内,使材料受到损伤并降低疲劳寿命。但若过载适当,有时反而是有益的。

3、材料组织的影响:①晶粒大小:晶粒越粗大,其值越高,越低,对疲劳寿命越有利。②组织:钢的含碳量越低,铁素体含量越多时,其值就越高。当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时,可以提高钢的,降低。③喷丸处理:喷丸强化也能提高。

9.试述疲劳微观断口的主要特征。(新书P113~P114,旧书P132)

答:断口特征是具有略呈弯曲并相互平行的沟槽花样,称疲劳条带(疲劳条纹、疲劳辉纹)。疲劳条带是疲劳断口最典型的微观特征。滑移系多的面心立方金属,其疲劳条带明显;滑移系少或组织复杂的金属,其疲劳条带短窄而紊乱。

疲劳裂纹扩展的塑性钝化模型(Laird模型):

图中(a),在交变应力为零时裂纹闭合。

图(b),受拉应力时,裂纹张开,在裂纹尖端沿最大切应力方向产生滑移。

图(c),裂纹张开至最大,塑性变形区扩大,裂纹尖端张开呈半圆形,裂纹停止扩展。由于塑性变形裂纹尖端的应力集中减小,裂纹停止扩展的过程称为“塑性钝化”。

图(d),当应力变为压缩应力时,滑移方向也改变了,裂纹尖端被压弯成“耳状”切口。

图(e),到压缩应力为最大值时,裂纹完全闭合,裂纹尖端又由钝变锐,形成一对尖角。

12.试述金属表面强化对疲劳强度的影响。(新书P117~P118,旧书P135~P136)

答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。

表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。

(1)

表面喷丸及滚压

喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。

表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。

(2)

表面热处理及化学热处理

他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。

13.试述金属的硬化与软化现象及产生条件。

金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。

金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。

金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。

循环硬化和软化与σb

/

σs有关:

σb

/

σs>1.4,表现为循环硬化;

σb

/

σs1硬化。

退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。

循环硬化和软化与位错的运动有关:

退火软金属中,位错产生交互作用,运动阻力增大而硬化。

冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。

第六章

金属的应力腐蚀和氢脆断裂

一、名词解释

1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的

低应力脆断现象。

2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。

3、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。

4、氢化物致脆:对于ⅣB

或ⅤB

族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,是金属脆化,这种现象称氢化物致脆。

5、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。

二、说明下列力学性能指标的意义

1、σscc:材料不发生应力腐蚀的临界应力。

2、KIscc:应力腐蚀临界应力场强度因子。

3、da/dt:盈利腐蚀列纹扩展速率。

7.如何识别氢脆与应力腐蚀?。

答:氢脆和应力腐蚀相比,其特点表现在:

1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。

2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。

3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。

4、氦脆断口上一般没有腐蚀产物或者其量极微。

5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。

第七章

金属的磨损与耐磨性

1.名词解释

磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。

接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。【P153】

第八章

金属高温力学性能

蠕变:在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。

等强温度(TE):晶粒强度与晶界强度相等的温度。

蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。

该指标与常温下的屈服强度相似。

持久强度极限:在高温长时载荷作用下的断裂强度---持久强度极限。

一、和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?

答案:1、首先,材料在高温将发生蠕变现象。材料在高温下不仅强度降低,而且塑性也降

低。应变速率越低,载荷作用时间越长,塑性降低得越显著。

2、高温应力松弛。

3、产生疲劳损伤,使高温疲劳强度下降。

二、提高材料的蠕变抗力有哪些途径?

答案:加入的合金元素阻止刃位错的攀移,以及阻止空位的形成与运动从而阻止其扩散。

    以上《材料力学题库》范文由一流范文网精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »一流范文网»最新范文»材料力学题库
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 一流范文网 如对《材料力学题库》有疑问请及时反馈。All Rights Reserved