好好学习,天天向上,学科吧欢迎您!
当前位置:首页 >> 反思 >> 优秀教案 内容页

新课标人教版八年级数学《三角形的内角》教学设计(第2课时)

xxxx资料《三角形的内角》教学设计(第2课时)
湖北省咸宁市咸安区马桥中学 王国斌
一、内容和内容解析
1.内容
直角三角形的性质及判定.
2.内容解析
直角三角形的性质是三角形内角和定理的延伸,也是以后学习“解直角三角形”必备的基础;直角三角形判定是平面几何中证明垂直问题的一个常用工具;直角三角形两锐角互余和两锐角互余的三角形是直角三角形这两个定理的探究形式体现了由几何实验到几何论证的研究过程.
直角三角形的性质与判定的探究形式是以三角形内角和定理为基础,定理的论证方法采取了情景创设,提出问题,动手操作,实验观察,得出结论,综合应用这样六个过程.
基于以上分析,确定本节课的教学重难点分别为:
教学重点:探索并掌握直角三角的性质定理和判定定理.
教学难点:有关推理表述及性质定理和判定和判定定理的应用.
二、目标和目标解析
1.目标
(1)体验直角三角形应用的广泛性,进一步认识直角三角形.
(2)学会用符号和字母表示直角三角形.
(3)经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.
(4)会用“两锐角互余的三角形是直角三角形”这个判定方法判定直角三角形及证明几何中的垂直问题.
2.目标解析
达成目标是:情景创设,提出问题学生观察、实验,学会用几何语言表述简单的推理,在三角形内角和定理的基础论证直角三角形的性质与判定.
三、教学问题诊断分析
几何推理过程的书写,这是学生实现由直观图形思维到逻辑推理能力的过度,学生会感到一定的困难,教学时,教师要让每个学生在数形计算基础上,引导学生总结归纳,从而发现证明思路,进一步规范推理的表述.
四、教学过程设计
1.创设情境提出问题
探索并证明直角三角形两个锐角互余定理
问题1要求学生观察图形,找出上图中所包含的直角三角形.
回顾小学已学习的直角三角形知识(直角三角形及相关概念

TAG标签: