“五年级数学找规律(1)教学设计及说课稿”这篇数学说课稿由学科吧(jsfw8.com)为您编撰,希望为广大数学教师在教研说课竞赛等活动中参考。
一、教学内容
《找规律(1)》是苏教版小学数学五年级上册第5单元的第一课时。教材涉及的具体内容是让学生探索并发现一些简单周期现象中的规律,根据规律确定某个序号所代表的是什么物体或图形。这部分内容是在学生初步认识间隔排列的物体个数关系的规律的基础上,运用学生原有的知识背景和生活体验,让学生在生动、具体、现实的情境中感悟新知,灵活运用。
二、教学目标
知识与技能
结合具体情境,探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么图形或物体。
过程与方法
主动经历自主探索、合作交流的过程,体会画图、列举、计算等解决问题的不同策略以及方法逐步优化的过程。
情感态度与价值观
在探索规律的过程中体会数学与生活的密切联系,获得成功的体验。
三、教学重点、难点:
重点:理解和掌握用除法计算的方法,确定某个序号所代表的是什么图形或物体。
突破方法:探索、尝试、归纳。
难点:用除法计算后所得的余数找到答案的方法。
突破方法:分析、比较。
四、教法与学法:
教法:引导、演示。
学法:自主探索、合作交流。
五、教学准备:
多媒体课件
六、教学过程:
(一)游戏激趣,导入新课
谈话:今天上课前老师和大家一起来做个小游戏,你来猜猜看把牌翻过来后是什么花色和数字?
(多媒体出示扑克牌的背面)
先翻出一张黑桃A,再翻出一张红桃A,引导学生猜一猜下面一张是什么牌。(学生随意猜猜看)
待翻到黑桃3后,提问:下面一张是什么牌?(学生猜猜看,直至最后第12张牌)
追问:你是怎么知道的?(指名回答,说说自己发现的规律)
谈话:你讲得非常好!像这样按照一定次序排列是一种有规律的现象,这样的排列现象在我们周围还有很多,今天我们就来一起“找规律”。
(揭示课题:找规律)
【设计意图】小学生喜欢听故事、做游戏等活动,以猜牌的活动引入,激发学生的求知欲望和学习热情,使学生很快地将注意力集中到本节课所要研究的问题上来,同时创造了轻松活泼而又严肃的氛围。
(二)创设情境,探索规律
1.观察并初步感受物体的有序排列
过渡:每当逢年过节,街道上总会张灯结彩,布置一新,老师在马路上拍了一张照片,请你首先来看一看,并说说照片中都有些什么装饰品?
(多媒体出示教材第59页例1的场景图,请学生说说自己发现了哪些装饰品)
提问:那这些装饰品是随意摆放的吗?(不是)
对,这些物体都是按照一定顺序、一定规律摆放的。请你再仔细观察一下,它们的摆放有什么规律?(学生在小组里说一说)
汇报交流(学生自由说一说,然后概括):
盆花:每2盆为一组,每组依次是蓝花、红花。
彩灯:每3盏彩灯为一组,每组依次是红灯、紫灯、绿灯。
彩旗:每4面彩旗为一组,每组依次是红旗、红旗、黄旗、黄旗。
【设计意图】这个环节学生说出各类装饰品的摆放顺序并不难,但学生容易说不清楚,因此在学生自由汇报的基础上,主要侧重点放在引导学生把观察到的规律用简洁、准确的语言清楚的表达出来,同时这也是为下面计算法解题作孕伏。
2.自主探究,体会不同的解决问题的策略
过渡:你们观察得很细致,说得很好,找到了他们排列的规律。现在我们就重点来研究研究盆花的摆放规律。
(多媒体出示盆花小图)
提问:谁再来说一说盆花的摆放规律是什么?
(学生回答:盆花是以一盆蓝花一盆红花每2盆为一组,进行重复地排列)
再问:在图中,我们能看到几盆花?(8盆)
如果继续照这样摆下去,从左起第9盆花是什么颜色的?(蓝色)
第10盆花是什么颜色的?(红色)
追问:照这样摆下去,左起第15盆花是什么颜色的花?(学生猜一猜)
谈话:这仅仅是我们的猜测,猜测就一定正确吗?还需要验证!现在请你根据自己的想法在草稿本上验证一下第15盆花是不是蓝花。
(学生独立思考,用自己喜欢的方法试着解决,待大多数学生形成初步认识之后,再组织学生在小组里交流。)
引导:同学们已经在小组里交流了自己的想法,谁愿意把你们小组的意见介绍给全班同学?(学生回答,教师适时展示并提问学生为什么用这种方法)
学生可能提出如下的想法:(随学生适当板书:画图法、单双数判断法、计算法)
(1)画图法:○●○●○●○●○●○●○●(○表示蓝花,●表示红花)第15盆是蓝花。(用其他图形、字母、文字表示的均可)
(2)单双数判断法:左起,第1、3、5……盆都是蓝花,第2、4、6……盆都是红花。第15盆是蓝花。
提问:其他同学明白这种想法的意思吗?(引导学生说出位置是单数的都是蓝花,双数的都是红花)
(3)计算法:把每2盆花看作一组,15÷2=7(组)……1(盆),第15盆是蓝花。
(学生说过程,教师板书:15÷2=7(组)……1(盆)答:第15盆是蓝花。)
针对算式提问:你能说说“15”表示什么意思?“2”呢?“7”呢?“1”呢?
学生一边说,教师一边多媒体演示:
○●○●○●○●○●○●○●○
讲述:哦!原来15表示一共有15盆花,2表示每2盆花看作一组,那总共15盆花里面就有这样的7组。
提问:余下的1盆是第几组的第几盆?为什么?
追问:第15盆花的颜色和哪一组中的第几盆花相同?
【设计意图】这个环节的教学着力点放在学生自主探究各种策略上,交流时不必急于优化出计算的策略,而是从学生的内心体验出发,肯定每一种策略都是可行的。通过学生的自我体验及探究构建的知识远比教师“灌输”更有教学效果,更能帮助学生理解问题,更能培养学生的数学思维和习惯。
3.独立尝试,在体验中优化解法
过渡:刚才同学们对盆花的摆放规律研究地非常好,也探讨出了三种解决问题的策略,现在我们来一起研究第二种装饰品彩灯的摆放规律。
(1)多媒体出示教材第60页的“试一试”第1题
提问:请你说一说,彩灯是按照什么规律摆放的?
(指名回答:彩灯是按照“红灯、紫灯、绿灯”每3盏为一组进行重复排列的)
追问:那么按照这个规律摆放下去,第17盏彩灯是什么颜色?第18盏和第19盏分别是什么颜色的?请你按照刚才的方法进行判断。
(学生独立解答,然后组织学生汇报,鼓励学生展示自己的想法,让学生自主说)
引导学生针对计算的方法进行思考:
①为什么除以3?(每3盏彩灯可以看作一组)17÷3=5(组)……2(盏),余2是什么意思?第17盏彩灯是第几组的第几盏?和每组中的第几盏灯相同?
②19÷3=6(组)……1(盏),余1代表第几组的第几盏?和每组中的第几盏灯相同?
③18÷3=6(组),得数没有余数,应该怎样得到答案?第18盏彩灯是第几组的第几盏灯?应是什么颜色的?
指出:每组有几个,除数就是几;余数是几,就对应每组的第几个;没有余数,就对应每组的最后一个。
(2)相机引导学生比较各种方法的优劣
画图法:适用于小数字。
单双数判断法:适用于每组为2个的。
计算法:具有普遍性。
(3)多媒体出示教材第60页的“试一试”第2题
过渡:通过刚才的研究,我们发现,原来画图法和单双数判断法都具有一定的局限性,而计算法则具有普遍性,现在就让我们运用计算法来看看彩旗的规律,看谁解决得又好又快?
提问:第21面、23面彩旗是什么颜色?为什么?
(指名板演,完成后评讲,集体订正)
追问:余数是几时是红旗?余数是几时是黄旗呢?
小结:从刚才的学习中,我们知道盆花、彩灯和彩旗都是有规律地排列,可以用画图法、单双数判断法、计算法等不同方法来解决它们的排列问题,而且计算法有着自己的优势,具有普遍性。
【设计意图】尊重学生的独特体验,教师不做硬性规定:一定要用计算的方法来解决。在完成试一试时,让学生自己去尝试、体验哪种方法更合适。在学生解决有关“彩旗”问题的时候,教师适时反问一下:为什么不画图?为什么不用刚才的单双数判断法来解决呢?学生很自然地比较出画图比较繁琐、单双数判断法法比较独特不适用于所有的题目,不具有普遍性,这样学生通过自己的体验优化出计算法最简便最具普遍性。
(三)巩固练习,加深对解题策略的理解
过渡:现在我们已经把街道上的各种装饰品的摆放规律全部研究了,也知道了计算法具有普遍性的原因,让我们趁热打铁,一起来看看小明和小红两位同学都发现了什么规律。
1.出示练一练第一题:
提问:围棋小组的同学正在摆棋子,你能知道第21枚摆的是白子还是黑子吗?
○○●○○●○○●○○●……
(学生解答,并说出自己的想法:21÷3=7(组))
2.出示练一练第二题:
小红正在按绿、黄、蓝、红的顺序穿一串珠。
提问:按照这样的规律穿下去,第18颗是什么颜色的?第24颗呢?
(学生独立列式解答,教师巡视,了解学生的解答情况,集
体订正,指名说说解法。18÷4=4(组)……2(颗),24÷4=6(组))
3.出示练一练第三题:
按照规律在括号里画出每组的第32个图形。
(1)△○□△○□△○□……()……32÷3=10(组)……2(个)
(2)○○○□○○○□……(□)……32÷4=8(组)
(3)△△△○○△△△○○……(△)……32÷5=6(组)……2(个)
强调:虽然找的都是第32个图形,但由于每组个数不同,结果也不一样。
【设计意图】在例1及试一试的基础上,学生已经了解到了画图法和单双数判断法的局限性以及计算法的普遍性,通过练一练的三道习题,使学生进一步掌握和理解如何运用计算法进行判断某个序号所代表的是什么图形或物体。
(四)应用规律,解决学习中的规律问题
过渡:同学们,其实规律离我们并不遥远,即使是在普通的计算题当中也有着自己的规律,请大家跟着老师一起算一算。
1.数字中的“奥秘”
用计算器计算6÷11,计算器会显示0.5454545454…
提问:这个小数的小数部分有什么规律吗?你知道小数点后面第100个数字是几吗?你是用什么方法解决的?
用计算器计算1÷54,计算器会显示0.0185185185…
提问:这个小数的小数部分有规律吗?你知道小数点后面第16个数字是几吗?怎么知道的?
2.生肖的规律(练习十第1题)
提问:生肖是几个为一组的?
你今年几岁?属什么?今年多少岁的人与你的属相相同?
(五)全课总结,感受生活中的规律
引导:同学们学得不错,通过今天的学习,你能说说有什么收获?你会用哪些方法解决今天的规律问题?你觉得哪种最简便?
谈话:我们今天找到了许多规律,也用规律解决了[内容来于Y-Y_课-件_园]许多问题,其实大自然中蕴藏着很多的有规律的现象……
欣赏大自然的规律(日出日落,月圆月缺,潮涨潮落,春夏秋冬…)
欣赏生活中规律(红绿灯、霓虹灯、花布地砖……)
谈话:原来在我们身边存在着许多规律,看来我们的生活中不缺乏数学,只是缺乏了发现数学的眼睛,希望同学们从现在开始做一个有心人,多多观察生活。
【设计意图】让学生欣赏一段图片集,了解大自然中的周期规律:日出日落,月圆月缺,潮涨潮落,春夏秋冬及生活中的一些周期规律,进而感受数学中的规律之美,体会数学与生活的密切联系,体验数学其实就在我们身边,以此来提高学生学习数学的兴趣和热情。
找规律(1)》说课稿
我说课的内容——《找规律》是苏教版国标本小学数学教材第九册第五单元第一课时的内容。
一、说教材
首先说说我对教材的理解。
学习本课内容之前,学生在四年级两册教材中分别学习了间隔排列的两种物体个数之间关系的规律,以及对几种物体进行搭配或排列的规律。在低年级的学习中,学生也多次经历寻找数或图形简单排列规律的过程。所以学生积累了一些探索规律的经验,初步具备了探索简单数学规律的能力。
本课内容是让学生探索简单周期现象中的规律,能根据规律确定某个序号所代表的是什么物体或图形。通过发现具体现象中的周期规律,对现象的后继发展现象作出判断、解决简单的实际问题等教学活动,激发探索兴趣,培养探索精神。
综观学生的知识基础和对教材的分析,我制定了如下教学目标:
1.知识与技能:结合具体情境,探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么图形或物体。
2.过程与方法:主动经历自主探索、合作交流的过程,体会画图、列举、计算等解决问题的不同策略以及方法逐步优化的过程。
3.情感态度与价值观:在探索规律的过程中体会数学与生活的密切联系,获得成功的体验。
教学的重点是:理解和掌握用除法计算的方法,确定某个序号所代表的是什么图形或物体。
教学的难点是:用除法计算后所得的余数找到答案的方法。
二、说教学法
如何突出重点,突破难点,实现上述三维目标呢?根据教材特点,我采取以下方法:
(一)创设有助于学生自主探究的情境,鼓励学生自主探究,便于学生形成解决问题的策略。
(二)营造合作学习的氛围,鼓励他们互相合作,分享思维成果,优化解决问题的策略。
(三)紧密联系生活,让学生在探索生活问题中,在运用知识解决生活问题中感受数学的应用价值,培养积极的情感态度。
(四)用多媒体体课件辅助教学,创设逼真的生活情境,提供多样的学习素材,化解教学难点。
三、说教学过程
我分如下四个主要环节完成本课教学:
(一)游戏激趣,导入新课
课一开始,我并没有急于将例1的场景图直接展示,而是先和学生做了一个猜牌的游戏,牌的顺序依次为:黑桃A红桃A黑桃2红桃2黑桃3红桃3黑桃4红桃4……以猜牌的活动引入,激发学生的求知欲望和学习热情,使学生很快地将注意力集中到本节课所要研究的问题上来,同时创造了轻松活泼而又严肃的氛围。
(二)创设情境,探索规律
这是本节课的重点,我首先用课件出示教材例1的场景图,并让学生看看三种装饰品盆花、彩灯、彩旗是按照什么规律摆放的,然后先重点研究盆花的摆放规律。首先我提问:在图中,我们看到8盆花,照这样摆下去,左起第15盆是什么颜色的花?自己试一试。让学生独立思考,给他们充足的时间。等大多数学生解决出问题后,组织学生在小组里交流。这时我注意每个小组的情况,发现学生不同的策略,并帮助有困难的同学。
小组交流后,组织全班交流。学生可能出现的方法有:
1.画图策略,用不同的符号表示蓝花和红花,一直画到第15盆花,是蓝花。
2.单双数判断策略,左起,第1、3、5……(也就是序号是奇数的)盆花都是蓝花,第2、4、6……(也就是序号是偶数的)盆花都是红花。所以第15盆是蓝花。
3.计算策略。把每2盆花看作一组,列式:15÷2=7(组)……1(盆)。第15盆是蓝花。
这里,方法3较抽象,不易理解,我让学生说说算式里每一个数的意思,通过不断追问,使学生明白:因为每两盆花为一组,每组花情况(jsfw8.com)完全相同,15盆花可以分为这样的7组,还余下1盆,是第8组的第一盆,和每组的第一盆一样,是蓝色的,配以课件,显示15盆花的分组情况,便于学生理解算理。在小结学生的三种方法后,不急于进行策略的优化,而是肯定这三种方法都是可行的,然后进去彩灯的研究。
我先出示“试一试”第一题让学生尝试解答。评价时,展示学生的不同方法,重点理解计算方法。引导学生说说算式每一部分的含义,特别是18÷3=6(组),问:没有余数,说明什么?第18盏灯是什么颜色的?得出:每3盏灯为一组,正好6组,第18盏等正好是第6组的最后一盏,所以应该与每组的第三盏灯颜色一样是绿色的。在此就相机对三种方法进行比较,使学生得出答案:画图法适用于小数目,单双数判断法适用于每组为2个的,而计算法具有普遍性。然后,让学生练习“试一试”的第二题。评讲时,让学生说说算式的含义和判断的结果,加强对计算法的认识,并通过算式的分析,使学生感受到“每组有几个,除数就是几;余数是几,就对应每组的第几个;没有余数,就对应了每组的最后一个。”这个环节,使学生逐步认识到计算方法的简便,实现策略的优化。在这个过程中我不把自己的观点强加给学生,而是用事实说话,让学生自己选择,实现自主建构。通过几次练习,使学生进一步理解算理,基本掌握这一方法。
(三)巩固拓展,加深对解题策略的理解
我先让学生独立完成“练一练”的3道题目,练习后,让学生说说这几小题中图形排列规律分别是什么,是如何计算的,算式中每个数字代表什么意思,通过学生的反复练说,使得学生进一步加强对计算法算理的理解。
然后在课件中展示“6÷11=0.54545454……”及“1÷54=0.0185185185……”,让学生找一找得数的小数部分有什么规律,拓展学生的思维,使得学生感受到其实在普通的计算中也蕴含着规律,感受到数学规律存在的普遍性。
(四)全课总结,感受生活中的规律
我与学生一起总结:通过今天的学习,有怎样的收获?你会用哪些方法解决今天的问题?你觉得自己表现怎样?让学生勤于反思,学会反思,锻炼良好的数学习惯。然后让学生欣赏一段图片集,春夏秋冬、日出日落、月圆月缺、涨潮退潮以及作息时间表等等,进而感受数学中的规律之美,体会数学与生活的密切联系,体验数学其实就在我们身边,以此来提高学生学习数学的兴趣和热情。
更多教师说课内容,请访问中国学科吧说课网频道。