最新范文 方案 计划 总结 报告 体会 事迹 讲话 倡议书 反思 制度 入党

超声造影全面总结

日期:2020-12-05  类别:最新范文  编辑:一流范文网  【下载本文Word版

超声造影全面总结 本文关键词:造影,超声

超声造影全面总结 本文简介:声学造影全面总结编辑整理:李智创建日期:2003年12月最后一次更新日期:2005-12-23江西超声网-www.jsfw8.com编者声明:本文的目的是为了总结造影剂成像基础知识和发展历史,并对目前各公司主要的造影技术进行初步阐述。本文中的信息来源于多种正式和非正式的媒介,因此,本文仅代表编者的个

超声造影全面总结 本文内容:

声学造影全面总结

编辑整理:李智

创建日期:2003年12月

最后一次更新日期:2005-12-23

江西超声网-www.jsfw8.com

编者声明:

本文的目的是为了总结造影剂成像基础知识和发展历史,并对目前各公司主要的造影技术进行初步阐述。本文中的信息来源于多种正式和非正式的媒介,因此,本文仅代表编者的个人观点,编者不对其中结论的正确性承担责任。如发现有误,欢迎与编者交流。

目录

第一部分

基础知识3

线性与非线性:3

机械指数:3

造影剂原理简述:3

造影剂微泡的历史:4

为什么要使用造影剂:4

造影剂的临床应用:4

造影剂成像技术的分类:5

第二部分

Sequoia平台提供的造影剂成像技术及功能:6

nPCI能量对比造影技术(Power

Contrast

Imaging):6

nADI造影剂探测成像技术(Agent

Detection

Imaging):6

nCCI相干对比造影技术(Coherent

Contrast

Imaging):6

nCPS对比脉冲系列造影成像技术(Contrast

Pulse

Sequencing):7

ADI原理:9

CPS原理:10

CPS的优势:12

第三部分

关于定量分析13

百胜超声造影技术:17

Philips

超声造影技术:17

TOSHIBA超声造影技术19

GE超声造影技术:21

第五部分

常见问题与解答22

1.问:为什么说西门子的CPS技术是世界上最先进的造影剂成像技术?22

2.问:其他公司都在主推什么造影剂技术?22

3.问:目前各公司的造影剂技术在临床应用上大致处于什么水平?22

4.问:目前在国内都能使用哪些造影剂?22

5.问:超声造影与CT和MRI造影相比有哪些优势和不足?22

6.问:百胜的CnTI技术号称MI最低可达0.01,且可以显示直接声压强度的数值(DP值),如何应对?22

7.问:百胜和ALOKA等公司都声称已经拥有了造影剂二维双幅实时对比显示的技术,如何应对?22

8.问:有人说东芝的高级动态血流成像可以看到肿瘤内部的细微血管,分辨率比CPS好,如何应对?23

9.问:很多公司都有微血管成像技术,为什么西门子没有?23

10.问:CPS技术中的精确微泡爆破技术有哪些方式?有什么用处?23

11.问:在哪里可以获得有关声学造影的临床文章?23

第一部分

基础知识

线性与非线性:

数学角度:设有两个变量x和y,如果可以用y=kx+b(k,b均为常数)来表示,则称x与y之间是线性关系,在图形上x与y的这种关系可以表示成一条直线。如果x与y不存在这种表达方式,则二者的关系为非线性。

直观理解:如果x的改变引起了y的改变,且二者的变化之间存在固定的比例关系(如同时增大2倍),则二者为线性关系;否则为非线性关系。

对于超声系统来说,考虑某个介质,如果发射超声信号增大一倍,回波信号也增大一倍,则该介质为线性表现;否则为非线性表现;造影剂微泡在超声照射下将会扩张和收缩,但由于内部含有气体,因此在超声照射下易于扩张而不易于压缩,这就产生了非线性的回波信号。

收缩

扩张

超声波

原始大小

机械指数:

超声波在人体内会产生三大效应:热效应、空化效应和声流。多数学者认为ISPTA(空间峰值时间平均声强)为生物学效应的主要指标,但未能明确表达超声的热效应和空化效应,1995年以后,国际上提出了机械指数MI和热指数TI的概念。

机械指数MI(Mechanical

Index):指超声在弛张期的负压峰值(单位MPa)与探头中心频率(单位MHz)的平方根的比值,用来反映超声在人体内可能造成的空化效应和声流,从而保证安全性。一般MI低于1.0认为无害,但对于特殊检查项目(如眼球、胎儿等)应调至更低。

在进行声学造影时,超声波信号会破坏微泡,减少微泡在体内的存在时间,机械指数用来反映超声信号的强弱。

造影剂原理简述:

1.

血液对超声的反射体主要是红细胞,但常规血液中红细胞对超声的反射非常微弱(只相当于组织细胞的千分之一),因而无法利用二维灰阶成像的原理来看到血流状况,只能利用红细胞运动时对超声产生的多普勒效应。

2.

造影剂是一种经过处理的特殊微泡,注射后进入血液循环。微泡在超声作用下产生以下几种表现

n

破坏:当MI>0.7或0.8时,微泡被超声打破,并在瞬间产生强烈回波信号;

n

谐振:当0.7/0.8>MI>0.2/0.3时,微泡产生非线性谐振;

n

反射:当发射超声机械指数MI<0.1,微泡不产生非线性谐振,而表现得像普通的人体组织一样线性振动;

因此,要想观察到造影增强的效果,必须使入射超声满足前两条之一。

3.

造影剂注射后,在不同组织的到达时间不相同,心腔通常在几个心动周期内就会灌注,然后是心肌,而到达肝脏约需要10~15秒,到达浅表器官、子宫等脏器则需要半分钟甚至更长时间。造影剂会随着血流循环至全身各部位,逐渐破坏,最终通过呼吸系统排出,一部分经过肝脏代谢。

4.

造影射通常由肘静脉注射,有两种方式:一种是团注(bolus

injection),有时也称为弹丸注射,即在短时间内将一定剂量的造影剂迅速注射入静脉;另一种是连续注射,即按照一定速度持续不断的注射入静脉。

造影剂微泡的历史:

n

早期的造影剂:无外壳的空气微泡,由双氧水(H2O2)或生理盐水经震荡后形成;可以增强多普勒信号强度,但极不稳定,且微泡直径较大,无法通过肺循环,只能用于右心显影和子宫输卵管造影。

n

第一代商品化造影剂:有外壳的空气微泡,由人白蛋白溶液经过振荡后形成;稳定性有一定提高,且可通过肺循环。但由于空气的可溶性较大,且在超声照射下微泡极易被破坏,增强效果只能持续几秒至几十秒;主要产品有Levovist,Albunex等。

n

第二代商品化造影剂:有外壳包裹的大分子气体(如氟碳气体,六氟化硫等),由于大分子气体不易溶于血液,使造影剂具有更好的稳定性和更均匀的微泡直径,增强效果可持续几分钟,因而可以观察造影剂在组织内进入到退出的全过程。主要产品有:Sonovue,Optison,Definity,Imagent等。

为什么要使用造影剂:

早期的造影剂仅仅是为了增强超声回波信号,使得二维、M型和血流的显示更加清晰、敏感,随着第二代造影剂的出现,造影剂作为血池示踪剂对组织内部的毛细血管的回波信号的增强,可以直接观察特定组织的二维结构和微循环的灌注和消退情况,由于不同病变常常表现出特定的灌注-消退过程和增强特征,因此为临床鉴别诊断提供了新的方法。

造影剂的临床应用:

1.

心脏方面可用于显示左室(LVO)或显示心肌(MCE)。

l

评估左室功能时,检查的准确性有赖于对心内膜的良好描绘。LVO可显著提高心内膜边界,从而对于成像困难的病人,把没有诊断意义的结果转变为有诊断意义的结果。

l

心肌声学造影(MCE)目前已成为研究冠心病的病理和生理的重要手段。应用领域包括:评价存活心肌、评价冠脉血管内皮功能、评价介入治疗疗效、测量冠脉储备功能等方面。

2.

腹部方面可用于显示肝脏、肾脏、子宫和卵巢等器官

l

肝脏:显示不同占位性病变(如原发性肝癌、转移性肝癌、局灶性结节增生等)的血供特点,有助于肝占位性病变的诊断及鉴别诊断;提高肿块与正常肝组织的对比度,有助于小肿块的发现。

l

肾脏:肿瘤周围有血管环绕,超声造影能提高肿瘤彩色血流检出率。如鉴别肥大肾柱与小肾肿瘤。

l

子宫和卵巢:位置较深,低速血流和小血管难以显示。造影后能够清楚显示子宫肌层和卵巢的彩色血流。可鉴别卵巢巧克力囊肿、子宫肌瘤、腺肌症等。

l

产科:观察胎盘的血供情况,诊断胎盘早剥、胎盘植入等。

3.

超声造影在甲状腺、乳腺、术中超声等方面的应用也在不断深入开展

造影剂成像技术的分类:

尽管各公司造影剂成像技术的名称五花八门各不相同,但按照所使用的机械指数高低可以分成两大类。早期的造影剂成像模式大多属于高MI,而在2000年左右开始出现了低MI的成像模式。

高机械指数(High

MI):机械指数高会破坏微泡,但微泡破裂的瞬间可以产生大量非线性信号,因而只能进行触发成像。该技术由于造影剂用量大,无法长时间观察充盈和弥散的过程,因而逐渐被低机械指数造影成像方式取代。

低机械指数(Low

MI):机械指数低可以减少对微泡的破坏,进行实时连续成像,能够观察造影剂从充盈到弥散的整个过程。为了在连续注射造影剂时观察再灌注的过程,通常在成像中的某个时刻用高机械指数将微泡全部打破,并将该时刻设为初始状态,然后观察造影剂的充盈-消退过程。从初始状态到达峰值的过程称为Wash-in(清空-进入过程);从初始状态到完全消退的过程称为Wash-in-out(清空-进入-退出过程);

第二部分

Sequoia平台提供的造影剂成像技术及功能:

n

PCI能量对比造影技术(Power

Contrast

Imaging):

应用于心脏造影成像,采用高机械指数的超声波打破照射野的部分微泡,利用微泡破坏的瞬间产生的大量非线性谐波信号进行成像,属于间歇成像方式。采用信号的失相关性(Loss

of

Correlation)技术,检测多普勒能量信息(能量图)。PCI具备很好的敏感度,但特异性一般。

PCI用于心脏

n

ADI造影剂探测成像技术(Agent

Detection

Imaging):

应用于腹部造影成像,采用高机械指数的超声波打破照射野的全部微泡,属于间歇成像方式。采用受激声发射(Stimulated

Acoustic

Emission)技术,检测回波信号强度(灰阶图)。ADI与腹部二维成像具有相同的空间分辨率,并可以将组织信号与造影剂信号分离。但由于高机械指数破坏了造影剂,因此无法进行连续观察。

ADI用于腹部

n

CCI相干对比造影技术(Coherent

Contrast

Imaging):

应用于全身造影成像,采用低机械指数,对微泡破坏较少,因此可进行连续成像。CCI使用单脉冲删除技术(Single

Pulse

Cancellation),与二维成像具有同样的时间分辨率,但无法区别组织信号与造影剂信号。

CCI用于腹部和心脏

n

CPS对比脉冲系列造影成像技术(Contrast

Pulse

Sequencing):

应用于全身造影成像,是目前超声界唯一的能利用造影剂的全部信号进行成像的技术。采用极低机械指数,延长了微泡的生存时间。具备最佳的空间分辨率和时间分辨率,同时能够将组织与造影剂的信号完全分离。由于使用了非线性基波信号,大大提高了信号强度,因而可以使用高频探头(最高14MHz)进行乳腺、甲状腺等浅表器官的造影研究,以及鼠、兔的心脏、肾脏造影的小动物实验等。

CPS用于心脏和腹部

Sequoia平台Cadence造影成像系列功能:

技术名称

PCI

ADI

CCI

CPS

中文

能量对比造影成像技术

造影剂探测成像技术

相干造影成像技术

对比脉冲系列造影成像技术

推出时间

较早

2000

1999

2002

原理

打破部分造影微泡,一次注射后可多次进行,属于多普勒成像技术

打破全部造影微泡,一次注射后的瞬时效果;二维成像技术

单脉冲删除技术,属于二维成像技术

调节多个脉冲的振幅和相位,去除全部的线性信号,利用全部的非线性基波和谐波

机械指数

极低

成像方式

间歇

间歇

连续

连续

微泡破坏

较多

很多

较少

很少

使用技术

失相关(LOC)

受激声发射(SAE)

单脉冲删除(SPC)

非线性基波

检测信号

多普勒能量

二维

二维

二维

时间分辨率

空间分辨率

显示方式

组织、造影剂、二者合成

组织、造影剂、二者合成

二者合成

组织、造影剂、二者合成

支持探头

3v2c,5v2c

6C2,4C1,4V1

3v2c

3v2c,4v1c,4C1,4V1,6C2,15L8,15L8w

优点

高的造影剂敏感度

能够区别组织和造影剂;适于使用Levovist;高空间分辨率;全场均匀;

高帧频,对造影剂的破坏少,没有闪烁伪像,图像均匀

极佳的组织和造影剂的区别;可以打破造影剂观察再灌注的图像;增加造影剂的存在时间,减少造影剂使用量;高帧频;全场均匀性,支持TEQ;高分辨率和穿透力;高敏感度和特异性;

不足

间歇成像;

敏感性高特异性不够

间歇成像;

机械指数不够低;穿透力不够好;不能区别组织和造影剂;

ADI原理:

f0

f0

2f0

Xmt

1

Xmt

2

-

-

发射

组织响应

f0

2f0

-

-

造影剂响应

发射第一个脉冲(高MI),组织和造影剂均产生基波和谐波信号,但该脉冲会打破造影剂微泡。因此,在发射第二个脉冲时,造影剂微泡已不存在,只有组织产生基波和谐波信号。两次回波信号相减,就能得到纯净的造影剂信号。

CPS原理:

发射脉冲中包括:

第一个波:半波正向,回波中包括组织线性基波(半波正向)、造影剂非线性基波、造影剂非线性谐波;

第二个波:全波反向,回波中包括组织线性基波(全波反向)、造影剂非线性基波、造影剂非线性谐波;

第三个波:半波正向,回波中包括组织线性基波(半波正向)、造影剂非线性基波、造影剂非线性谐波;

三个波形相加,可完全消除组织基波,得到造影剂非线性基波,造影剂非线性谐波。之所以造影剂的基波不会被抵消,是因为第二次接收的波形中,造影剂基波信号的形式并不是第一次和第三次的相加(非线性的体现)。

能够在短暂的时间内连续发射振幅和相位都不相同的多个脉冲信号,体现了Sequoia相干成像的优势。

上图:左侧为回波信号的时域成份,右侧为对应回波信号的频域成份。注意不同颜色的虚线和实线分别代表组织和造影剂的回波信号成份。

原理中需要明确以下问题:

1.

只要MI大于一定值(如0.1),造影剂只产生非线性信号,不产生线性信号;

2.

组织产生线性基波和非线性谐波;

3.

无论是组织还是造影剂,基波能量明显高于谐波。

4.

与造影剂的非线性谐波信号相比,组织的非线性谐波信号非常微弱,可以忽略不计。

CPS的优势:

1.

基于Sequoia的相干脉冲发射技术和可编程的波形发生器(Programmable

waveform

generator),同时调整脉冲的振幅和相位,可以在造影剂成像时实现以下技术:精确脉冲整形(precise

pulse

shaping)、动态发射聚焦(dynamic

transmit

focusing)等,从而提高造影图像质量;而其他公司的造影成像技术大多不能与其他先进成像技术同时使用。

2.

基于Sequoia的相干图像形成技术,可以从组织信号中识别和区分组织和造影剂信号;是目前唯一能在低机械指数的情况下完全分离组织和造影剂产生的基波信号并实时双幅对比显示的技术,而其他技术只是简单的将全部基波信号去除。

3.

由于造影剂成像时要使用正常组织的灌注情况作为参考,因此在注射造影剂之前对基础灰阶图像的调节非常重要,Sequoia使用TEQ均衡成像可以快速优化造影剂过程中的图像,节省大量调节时间,减少操作者对结果一致性和可重复性的影响。

4.

造影剂成像应用频率范围1.5MHz~14MHz,由于使用了非线性基波信号,大大增加了信息量,因此可以使用高频探头(最高14MHz)进行浅表小器官(乳腺、甲状腺)的造影成像,及小动物实验(鼠、兔的心脏、肾脏等)研究;

5.

具备精确微泡爆破的控制技术,可以单次爆破、连续爆破等,可以反复爆破并观察造影剂再灌注的过程,从而最大程度地利用造影剂微泡进行成像;

6.

可以将多普勒能量图与造影剂成像进行融合显示,血管分支结构由彩色多普勒能量图直接显示,灌注情况由二维灰阶强度信号显示。

7.

全部造影剂成像的过程可以进行编程预设置,从而实现标准化的操作流程。增加结果的可比较性。

8.

强大的在线(ACQ)和脱机(CUSQ)分析软件,可对造影剂的成像结果进行时间强度曲线的定量分析。

第三部分

关于定量分析

由于超声造影的实时性,使得造影剂从到达到消退的全过程可以连续观察,并保存下来进行定量分析。目前主要的分析方法是操作者定义感兴趣区(ROI),由系统分析ROI内部造影剂强度随时间变化的过程,进而得到时间强度曲线(TIC)。造影剂注射方式不同,时间强度曲线的形式也不同。团注(bolus)的曲线是指示剂稀释曲线,包括充盈和消退的过程,而持续注射的曲线上只有充盈过程而没有消退过程。造影剂到达组织并开始增强这一过程中,时间性非常重要,而时间强度曲线上可以测量某些反映造影剂到达过程的时间参数:

n

到达时间AT(Arrival

Time):是指造影剂的强度相对初始状态发生显著变化时(ACQ软件中用阈值常数表示,用户可修改)所经历的时间

n

达峰时间TTP(Time

To

Peak):从初始状态到造影剂信号强度达到最大值所经历的时间

TIC时间强度曲线

由于时间强度曲线由采样点组成,直接测量该曲线所得到的参数,重复性和一致性均不够理想,而ROI的位置变动对曲线上采样点的数值也会产生很大的影响,因此通常将时间强度曲线进行函数拟合。目前比较常用的函数是指数函数:

该函数主要用来拟合连续注射时flash/replenishment过程的时间强度曲线:在某一时刻用高机械指数将微泡全部爆破,并将该时刻设为计时起点,观察造影剂再次灌注并达到峰值的过程(wash-in)。其中主要参数包括:

n

基础信号强度BI:是初始时刻信号强度,

n

增强幅度A:指数函数的极大值与基础信号强度BI的差值;

n

β:反映曲线的上升速率。有时也可以用1/τ代替β,此时τ(充盈时间)表示从BI增强到A的63%所需要的时间。

用单指数函数进行拟合的结果

这里需要注意:到达时间AT,达峰时间TTP和峰值强度PI是时间强度曲线上的特征参数,只与ROI的采样点有关,与拟合函数无关;而基础强度增强幅度A和上升速率β是指数函数的特征参数。因此A和PI之间不存在固定的数学关系。

另一种可用来拟合的函数是Gamma

Variation

函数,形式为:

该函数主要用于拟合造影剂团注后的时间强度曲线,表示造影剂清空-进入-退出(wash-in-out)的全过程。

造影剂注射方式

团注(bolus)

连续注射

时间强度曲线的形式

零-增强-峰值-消退

零-增强-峰值

适用的拟合函数

Gamma函数

指数函数

函数参数

a,b,I0

A,β,BI

拟合假设

造影剂在某一时刻被瞬间注入静脉,然后按指示剂稀释原理通过单室腔

造影剂在零时刻被爆破,然后以一定速度连续到达目标区域

优点

?

适于组织灌注情况

缺点

只适用于表达大血管,对组织灌注情况拟合度较低

对低速血流的灌注拟合度较低

关于造影剂定量分析所使用的拟合函数和相应的算法不局限于指数函数和Gamma函数,其他几种函数目前仍处于研究阶段。目前超声设备上提供的分析软件大多数是自动计算出时间强度曲线和拟合曲线及相应的特征参数值,而其精确度还需要进一步验证。对于分析软件得出的结果,国内超声界尚未得出普遍意义上的结论。

计算时间强度曲线时可以采用两种信号,一种是使用系统在检波合并后第一次逆运算的线性化信号(即原始声学信号);另一种是使用原始信号经过前处理、数字扫描变换DSC和后处理(如边界增强、对数压缩等)之后得到的视频显示信号(视频信号)。视频信号与原始信号之间没有直接映射关系,理论上并不能真实反映ROI中实际的造影剂微泡浓度,而使用反对数压缩后得到的原始声学信号才更加客观。但视频信号只有256个灰阶(相当于30dB左右的动态范围),这样可以减少过亮的数据点对整个结果的影响。因此,目前很多研究仍然使用对数压缩后的视频信号进行定量分析。下表是两者间关系的简化表示:

对数压缩

声学信号(动态范围高)

视频信号(动态范围低)

反对数压缩

ACQ软件可以由操作者选择使用对数或反对数压缩的数据。

在造影成像过程中,受操作者手法、病人呼吸等影响,很难保证ROI位置的固定,因此在ACQ定量分析软件中采用了自动追踪的方法。这是一种基于互相关技术的匹配方法。有两种方式供用户选择:刚体方式(rigid

body)只将图像进行平移和旋转,而不改变图像内部像素点的相对位置;扭曲方式(warping)将图像分解成若干小区域,计算每个小区域的帧间互相关,按照最大互相关的原则将帧与帧之间的图像进行匹配。ACQ软件中操作者可以在这两种方式间加以选择。但这种自动追踪仅能解决相同平面内的较小的位置变动,对于脏器间发生较大的相对运动,或切面发生改变等情况,均不能取得理想的效果。因此,在造影成像过程中,要求切面固定,病人平稳呼吸,否则难以进行定量分析。

扭曲方式示意图

第四部分

不同厂家的技术对比

除西门子以外,百胜、Philips、东芝、GE在声学造影方面也开展了相应工作。

百胜超声造影技术:

n

低机械指数的谐波能量成像(LM-HPI):使用低机械指数发射超声波,提取回波信号中的二次谐波的多普勒能量信息。应用于腹部。敏感度高但特异性差,造影剂用量较多。

n

造影剂三频段接收技术(C3

Mode):使用高机械指数发射超声波,提取回波信号中的1/2次谐波、基波和2次谐波的多普勒能量信息。应用于腹部。减少造影剂用量。

n

实时造影匹配成像(CnTI):发射纯的基波信号,接收时主要处理二次谐波信号。使用低机械指数。支持高频探头。用于全身。

n

造影剂微血管灌注成像(CMI):对于微细血管内逐个通过的气泡进行成像的方式,采用累积多帧图像并加以融合的方法,可以显示微血管灌注情况。可以用彩色多普勒速度和能量模式显示,支持双幅动态显示和Wash-in-out分析。

n

3D+CnTI:使用带定位装置的常规探头进行扫描,重建出静态三维图像,该功能与CnTI造影剂技术相结合,以获得肿瘤的三维图像。

技术

推出时间

机械指数

造影信号

应用领域

CnTI

2001

低MI

二维

全身

C3

Mode

2000

高MI

二维

腹部

LM-HPI

较早

低MI

多普勒

腹部

Flash

较早

高MI

多普勒

全身

CMI

2003

低MI和高MI

多普勒

腹部

百胜超声造影的主要问题:

1.

无法利用造影剂的非线性基波频率。因此,对造影剂的敏感度受到影响,为达到临床需求,通常要使用比CPS更大剂量的造影剂,或者提高发射功率和机械指数。

2.

进行造影时,百胜所宣传的各种图像优化和后处理功能均无法使用,二维图像噪声较大。

3.

无法在实时状态下完全分离组织和造影剂的信号,因此不支持双幅动态分别显示二维图像和造影剂图像。

4.

由于百胜的造影剂成像技术发射窄频信号,通常使用的宽频探头在进行造影剂成像时不能最大程度接收(与探头的品质因数Q有关)。因此为达到好的成像效果,需要使用专用的造影成像探头。大大增加购买设备的支出。

5.

3D造影:仅能获得静态3D效果,无法观察不同时相的情况;3D成像依赖外接的定位装置。

Philips

超声造影技术:

Philips

造影剂技术由ATL和HP分别独立开发,在ATL的HDI

5000上使用的技术包括PIH,PPIH,ADI,MVI,在HP的SONOS

5500上使用的技术包括PMI,MPP等。

n

脉冲反相谐波成像PIH:发射两次相位相反的超声信号,抵消基波,保留谐波,相比以往的造影剂谐波成像技术,可以使用宽频信号进行成像,提高轴向分辨率。可用于高MI和低MI。在两组发射波形之间,组织本身如果发生微移,基波将不能完全抵消,形成噪声,在造影图上将发生背景增强的现象。而理想状况下,造影剂到达以前背景图像应当是全黑的。

n

能量脉冲反相谐波成像PPIH:发射三组以上的脉冲信号,组织运动使得每个信号相位间隔相差一个很小的角度,通过小角度公式的近似计算,可以迭加消除组织运动造成的相位差,保证基波被抵消时不会有太多剩余。该方法显示造影剂的多普勒能量信号,用于高MI成像。

n

造影剂探测成像ADI:与西门子ADI技术类似;

n

微血管成像MVI:微血管中的微泡和红细胞均只能单个通过,不能与组织之间形成足够的信号强度差异,难以直接从组织背景上观察到,但由于微泡在微血管中运动很慢,可以将连续多帧图像迭加在一起并加以显像。这个过程类似于化学中用电子云来描述电子的运动方式。

n

能量调制技术PMI和多脉冲处理技术MPP:发射不同幅度的脉冲信号,按比例放大到相同幅度后相减,由于组织的线性特性和造影剂的非线性特性,消除组织信号而保留造影剂信号。应用于实时MCE造影

技术

推出时间

机械指数

造影信号

开发者

应用领域

PIH

1996

高和低MI

二维

ATL

全身

PPIH

1998

高MI

多普勒

ATL

全身

ADI

2000

高MI

多普勒

ATL

腹部

MVI

2002

低MI

二维

ATL

腹部

PMI

2000

低MI

二维

HP

心脏

MPP

2002

低MI

二维

HP

心脏

Flash

2003

高MI

多普勒

Philips

心脏

TOSHIBA超声造影技术

n

ADF高级动态血流成像:宽频带血流显示技术,提高血管显示的敏感度和信噪比,注射造影剂后能够看到更为丰富的血管网络。高MI用于全身;

高级动态血流成像

n

VRI血管识别成像:用常规多普勒速度图显示大血管,用绿色显示灌注信号;用于腹部的低MI成像方式;类似复合CPS成像;

VRI血管识别成像

n

1.5次谐波成像及1.5RSI比率减影谐波成像:高MI成像用于心脏;

n

MFI微细血流成像:参见Philips的MVI;

MFI微血管成像

n

FEI闪烁回声成像:类似Flash的高MI心脏造影

n

PSI脉冲减影造影剂谐波成像:类似脉冲反相谐波,适于低MI的心脏实时造影;

n

到达时间成像:用不同颜色编码显示造影剂不同的到达时间;

到达时间成像

技术

机械指数

造影信号

应用领域

ADF

高MI

多普勒

腹部

VRI

低MI

多普勒

腹部

1.5RSI

高MI

多普勒

心脏

MFI

低MI

二维

腹部

PSI

低MI

二维

心脏

FEI

高MI

多普勒

心脏

GE超声造影技术:

n

CPI编码脉冲反相:低MI用于全身,支持L9/L7/VV7平台;

n

Accumulation模式:类似Philips

MVI

n

TAD

PI-

TruAgent

Detection/Phase

Imaging:低MI用于腹部,类似彩色取样框,可进行双幅对比显示(二维/二维+造影剂)

TAD

PI模式

第五部分

常见问题与解答

1.

问:为什么说西门子的CPS技术是世界上最先进的造影剂成像技术?

答:因为只有CPS可以利用造影剂所产生的非线性基波和谐波信号。

2.

问:其他公司都在主推什么造影剂技术?

答:到目前为止,百胜公司主要介绍CnTI;Philips主要介绍PIH脉冲反相谐波技术(最进又提出了先进非线性脉冲序列技术);东芝主要介绍VRI血管识别成像技术;GE主要介绍CPI编码脉冲反相技术,上述技术均为低MI实时造影成像技术。

3.

问:目前各公司的造影剂技术在临床应用上大致处于什么水平?

答:在腹部造影方面,百胜和西门子是最早致力于宣传推广造影成像的公司,都有大量的造影用户群和临床应用资料;东芝从2004年开始在全国范围内大力推广,拥有了几家重点客户和实际临床应用结果;Philips虽然早在1996年就提出并实现了造影剂谐波成像,但没有继续投入,到目前为止也没有提出更新的技术,因此造影成像的用户和资料较少。GE在这几家公司中起步较晚,且临床效果一般,因此虽然一直宣传,但始终没有得到广泛认可。

在心脏低MI造影方面,除西门子的CPS技术有比较多的临床应用结果以外,其他公司的低MI实时灌注均没有取得明显进展。

浅表器官的造影属于新兴领域,各公司都是在2004年左右才开始发展相应的技术并进行临床应用,至今仍在研究过程中。

4.

问:目前在国内都能使用哪些造影剂?

答:可以使用第一代造影剂Levovist和第二代造影剂Sonovue,由于造影剂属于药品,需要经过严格的临床实验和审批注册,因此其他几种第二代造影剂在国内暂时无法用于临床。

5.

问:超声造影与CT和MRI造影相比有哪些优势和不足?

答:

优势:可以实时连续观察;检查费用更低;无射线损害;造影剂无毒副作用;对病灶的敏感性和特异性与CT/MRI不相上下;

不足:空间分辨率较低;超声造影发展时间较短,没有普及;

6.

问:百胜的CnTI技术号称MI最低可达0.01,且可以显示直接声压强度的数值(DP值),如何应对?

答:MI低,可以延长微泡的存在时间,但并不是越低越好。当MI低于0.1时,大多数微泡将不会产生非线性振动,而表现得跟正常组织一样,这将严重影响增强的效果,因此所谓0.01并不具备临床应用意义。而用DP值来反映作用在微泡上的声强度,没有考虑当前使用的成像频率对微泡的影响,也没有考虑不同病人的声学特性,因此不能简单的认为DP越低就对微泡破坏越少。

7.

问:百胜和ALOKA等公司都声称已经拥有了造影剂二维双幅实时对比显示的技术,如何应对?

答:在2005年6月之前,没有任何临床资料能够证明其他公司掌握了在低MI情况下完全分离显示组织和造影剂信号并实时双幅对比显示的技术;很多公司往往用其他类似的功能加以替代,如高MI造影时的双幅对比(触发造影,帧频低),或将常规双幅对比成像时降低增益(造影剂到达之前看上去很暗,来模仿去掉组织的图像)等;而这些都不是真正的低MI情况下组织/造影剂双幅实时对比显示。

8.

问:有人说东芝的高级动态血流成像可以看到肿瘤内部的细微血管,分辨率比CPS好,如何应对?

答:所谓细微血管,仍然指的是循环系统中的微小动脉或静脉,而造影剂成像技术目前已不再局限于观察血管的结构,而是观察脏器的整体微循环灌注情况(毛细血管直径只有几微米,且广泛分布,不可能从组织中识别),从而反映其功能。东芝强调其对细微血管的显示,恰恰说明其造影能力目前仍停留在血管网络的水平,而不能达到器官灌注水平。

9.

问:很多公司都有微血管成像技术,为什么西门子没有?

答:微血管成像技术并不是一项特殊的功能,而是将造影剂通过微血管的过程进行高速拍摄并迭加(类似照相机的连拍功能),该功能从分类上仍然属于高MI的触发成像,是早期的造影技术,在128XP上就可以完成。Sequoia由于有了CPS成像技术,直接观察灌注情况,其中已经包含了微血管,因而无须再单独显示微血管的结构。

10.

问:CPS技术中的精确微泡爆破技术有哪些方式?有什么用处?

答:精确微泡爆破技术可以自动实现多次重复爆破,爆破间隔以秒或心动周期为单位,可以等间隔或间隔递增。重复爆破主要用于造影剂连续注射时,可以存储爆破后某些特殊时刻的图像(如1秒、2秒、3秒……),从而模拟团注造影剂后的充盈过程(wash-in),这样就可以使用指数函数对连续注射造影剂所得到的时间强度曲线进行拟合和分析。

简单的说,如果没有精确微泡爆破技术,当连续注射造影剂时,使用指数函数进行拟合将无法得到有意义的拟合结果。

11.

问:在哪里可以获得有关声学造影的临床文章?

答:欧洲放射学会曾于2004年10月出版了增刊,专题介绍CPS和SonoVue相结合的临床应用。该增刊的全文可由如下地址下载:

http://www.jsfw8.com/(niu10b45kv0rkg45z13wzi55)/app/home/issue.asp?referrer=parentsearchpublicationsresults,3,4;

国内超声造影的论文散见于超声专业杂志中。有关超声造影剂的专著仅有一本:《超声造影基础与临床应用》(2004年6月出版,编者:王兴华;ISBN:7801216903;定价10元)

-

33

-

    以上《超声造影全面总结》范文由一流范文网精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »一流范文网»最新范文»超声造影全面总结
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 一流范文网 如对《超声造影全面总结》有疑问请及时反馈。All Rights Reserved