好好学习,天天向上,学科吧欢迎您!
当前位置:首页 >> 反思 >> 优秀教案 内容页

教学随笔:如何成为学生学习的促进者

新课程要求教师转变角色,成为学生学习的促进者。然而,如何才能实现这一角色的转变呢?
一、促进者的角色如何理解
教学二年级(下册)“加法的估算”。教师出示:电话机206元,取暖器292元,买一台电话机和一台取暖器,大约需要多少元?
师:需要算出精确值吗?我们一起来估计一下。
(学生思考)
生1:206+292=498元,498元≈500元。
生2:大约需要500元,200+200=400元,92+6=98元,498元≈500元。
师:能不计算就估计出来吗?小组讨论一下。
生3:百位上有400,十位上还有,所以要500。
生4:92接近100……
纠缠了这么久,学生始终没有给出教师预想的估计方法:把每个加数看成接近的整百数,然后相加。其实这很正常,因为这是学生第一次接触加法的估算,原来一直习惯于计算,而教师又没有引导学生该怎样想。显然,这位教师对于怎样的教学行为方能体现“促进者”的角色定位尚存疑惑,这是导致其教学行为出现偏差的直接原因。
二、促进者的角色如何扮演
教学四年级(下册)“认识平行四边形”。教材的编排是通过具体的操作活动:想办法“做”出一个平行四边形,引导学生自主探索平行四边形的特征。大多数教师都为每组学生准备了一套操作材料:钉子板、方格纸、两块一样的三角板、小棒。可大同中也有小异:有的教师准备了4根小棒(两长两短),有的教师准备了5根小棒(在两组等长的之外,还加了一根不同长度的)。
一根小棒的区别,体现出了教师教学观念的差异。仅仅要学生“做”出一个平行四边形,还是要引导学生经历“做”出平行四边形的过程?多一根小棒,学生就有了选择的空间,就能更充分地思考、感受平行四边形对边长度相等的特征。否则只是流于形式地摆一摆,结果是有的,但由于缺少了思维参与,活动意义不大。教师要做学生学习的促进者,就得考虑学生怎样去学,该为学生的学习提供怎样的服务,从而确认和协调达到目标的最佳途径。
此外,教师要扮演好促进者的角色,有一种习惯或者素质必须具备,那就是积极参与。学生在自主观察、动手操作或讨论交流时,教师要认真地看,积极地听,设身处地地感受学生的所作所为、所思所想,随时抓住课堂生成的教学资源,给予学生必要的指导。
还是“认识平行四边形”这一课,有一个学生示范借助直尺来画平行四边形。第一步:沿着直尺的上下两条边画了两条直线;第二步:左右随意画了两条看似平行的直线。此时,有的学生摇头说“不对”,有的说“还要量长度”。当然还有很多学生似乎在沉思,还没反应过来。教师及时介入:“这样画对吗?谁来纠正?”接着又请一个学生上来正确地画了一遍。但我总觉得这里少了些什么。当第一个学生随意画出看似平行的两条线时,如果教师马上问上一句:“能确定是平行吗?”是不是能让每个学生豁然开朗?如果教师听清了部分学生说的“还要量长度”,进而刨根究底,是不是正好让学生再次感知平行四边形的本质特征:两组对边分别平行且相等?
再来看刚才的估算教学案例。如果教师真正深入地钻研了教材,整堂课的设计会始终孕伏“多一些”和“少一些”。一个数接近整百数,可能比整百数多一些,如206≈200;可能比整百数少一些,如292≈300。这样,学生就容易理解加法的估算方法了。
在课程改革深入推进的过程中,每位教师都在寻找自己的位置。有一点不容置疑,那就是:能否扮演好学生学习的促进者将直接影响教学效果。这有待于教师们不断实践、反思、积累、总结

TAG标签: