上海市静安区教育学院曹培英
小学是义务教育的一个阶段,加强中小学数学教学衔接问题的研究与实践,具有重要的现实意义。
首先,从哲学层面上看,这方面的研究与实践,是在学科教学中落实“科学发展观”的具体体现。
其次,从培养目标来看,它又是实现义务教育数学课程总体目标的需要。
再次,从课改理念来看,新一轮课程改革的核心理念是“以学生发展为本”,研究和解决中小学数学教学的衔接问题,其宗旨就是为了促进学生数学学习的可持续发展。
义务教育数学课程标准(实验稿)的研制、颁布,为我们研究和践行教学的衔接,提供了学科教学理论方面的支撑。
今年9月,课改首轮实验即将进入小学阶段的最后一学年,现在提出这一课题开展研究,非常及时。以研究先行,引领课改实践,也是提高数学课程改革阶段性成效的必要保证措施。
一、换位思考:中学数学教学需要什么样的基础
问卷与座谈调研表明,初中数学教师对小学毕业生数学基础的期望,总体上排在第一的是“扎实的数值计算基本功”,其次是初步的逻辑思维能力和一定的空间观念,然后是良好的学习习惯。
就逻辑思维能力而言,一部分教师认为分析与综合、抽象与概括能力比较重要。这是逻辑思维能力的心理学内涵中,几个与数学学习较为密切的因素。另一部分教师认为清晰的概念,根据概念作出判断,以及初步的推理能力,比较重要。这实际上是逻辑思维能力的逻辑学诠释。
关于空间观念的看法比较一致,希望学生会看图,能想象。
至于对小学毕业数值计算基本功和良好学习习惯的要求,后面再作讨论。
二、整体分析:中小学数学教学内容的衔接
在数与代数领域,中小学数学教学内容的衔接主要表现为由算术数到有理数、实数,由算术运算到代数运算。前者的衔接环节是负数的初步认识,后者的衔接环节是用字母表示数。即
非负有理数→初步认识负数→有理数
数的运算→用字母表示数→式的运算
也可以从类比的视角将中小学该领域主要内容的发展,概括为由“数”到“式”。事实上,教学中有很多地方可以进行类比。如:整数与整式的类比,整数分解(分解质因数)与因式分解的类比,整数运算与整式运算的类比,还有分数与分式的类比,分数运算与分式运算的类比等。
此外,在认识、学习数量关系方面,从认识常见数量关系开始,经过认识正比例、反比例作为过渡,进入中学后开始较系统地逐步学习函数。相应地,解决实际问题的数学方法,起初全用算术解法,然后引入简单的方程,算术与方程两种解法并存,再过渡到以方程为主的代数解法。
在空间与图形领域,中小学数学教学内容的衔接,主要体现为由直观几何、实验几何向论证几何逐渐过渡。
中小学数学教学内容在数与形两大方面的相互衔接,要求小学的教学则必须注意“顾后”,当然,也要求中学的教学必须注意“瞻前”。