好好学习,天天向上,学科吧欢迎您!
当前位置:首页 >> 反思 >> 优秀教案 内容页

初中数学公开课《二元一次方程组》教案

澄迈中学曾文娇

教学目标:1.认识二元一次方程和二元一次方程组.

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

教学重点:理解二元一次方程组的解的意义.

教学难点:求二元一次方程的正整数解.

教学过程:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.

这两个条件可以用方程xy=22

       2xy=40表示.

上面两个方程中,每个方程都含有两个未知数(xy),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

xy=22

       2xy=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.

探究:

满足方程①,且符合问题的实际意义的xy的值有哪些?把它们填入表中.

x
y

上表中哪对xy的值还满足方程②

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

例1 (1)方程(a+2)x+(b-1)y=3是二元一次方程,试求ab的取值范围.

(2)方程x

TAG标签: