好好学习,天天向上,学科吧欢迎您!
当前位置:首页 >> 反思 >> 优秀教案 内容页

新人教版七年级数学上有理数的乘法教案及教学反思

有理数的乘法教学设计(一)
教学目的:
1.知识与技能
体会有理数乘法的实际意义;
掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
2.过程与方法
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。
通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
3.情感、态度与价值观
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
教学重点:
应用法则正确地进行有理数乘法运算。
教学难点:
两负数相乘,积的符号为正。
教具准备:
多媒体。
教学过程:
一、引入
前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.
问题一:有理数包括哪些数?
回答:有理数包括正整数、正分数、负整数、负分数和零.
问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?
回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.
计算下列各题;
  
以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.
二、新课
我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。  
如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。
1.正数与正数相乘
问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
  (+2)×(+3)=+6
答:结果向东运动了6米.
2.负数与正数相乘
问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
  (-2)×(+3)=(-6)
3.正数与负数相乘
问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
  
讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为
  (+2)×(-3)=-6
4.负数与负数相乘
问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
  
讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为
 (-2)×(-3)=+6
5.零与任何数相乘或任何数与零相乘
问题五:原地不动或运动了零次,结果是什么?
答:结果都是仍在原处,即结果都是零,若用式子表达:
  0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
综合上述五个问题得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何数与零相乘都得零.
观察上述(1)~(4)回答:
1.积的符号与因数的符号有什么关系?
2.积的绝对值与因数的绝对值有什么关系?
答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.
由此我们可以得到:
两数相乘,同号得正,异号得负,并把绝对值相乘.
(1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:
口答:确定下列两数积的符号:
  
  
例题:计算下列各题:
  
  
  
解题步骤:
  1.认清题目类型.
  2.根据法则确定积的符号.
  3.绝对值相乘.
练习:
  1.口答下列各题:
  (1)6×(-9);(2)(-6)×(-9);
  (3)(-6)×9;(4)(-6)×1;
  (5)(-6)×(-1);(6)6×(-1);
  (7)(-6)×0;(8)0×(-6);
  (9)(-6)×0.25;(10)(-0.5)×(-8);
  
  注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.
  2.在表中的各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:
  3.计算下列各题:
  (1)(-36)×(-15);(2)-48×1.25;
  
  4.填空:
  (1)1×(-5)=____;(-1)×(-5)=____;
  +(-5)=____;-(-5)=____;
  (2)1×a=____;(-1)×a=____;
  (3)1×|-5|=____;-1×|-5|=____;
  -|-5|=____
  (4)1+(-5)=____;(-1)+(-5)=____;
  (-1)+5=____.
三、小结
(1)指导学生看书,精读乘法法则.
(2)强调运用法则进行有理数乘法的步骤.
(3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.
四、作业
1.计算:
  (1)(-16)×15;(2)(-9)×(-14);
  (3)(-36)×(-1);(4)13×(-11);
  (5)(-25)×16;(6)(-10)×(-16).
2.计算:
  (1)2.9×(-0.4);(2)-30.5×0.2;
  (3)0.72×(-1.25);(4)100×(-0.001);
  (5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.计算:
  
4.填空:(用“>”或“<”号连接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)当a>0时,a____2a;
(4)当a<0时,a____2a.
板书设计
1.4有理数的乘法
法则:练习
1.
2.
教学设计思路
本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。通过对实际问题的解决,引入有理数的乘法法则。在讲解运动的例子时运用现代化教学手段,把图形中的“静”变“动”,增强了直观性,初步培养想象能力。
教学反思
强调学生与教师一起共同参与教学活动,我们坚持把教学活动过程体现在教学中,又激发学生的思维积极性,让学生学会分析问题和解决问题。

TAG标签: