xxxx年新人教版七年级数学下册7.1.1有序数对教案
第七章平面直角坐标系
7.1.1有序数对
教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法
培养学生用数学的意识,激发学生的学习兴趣.
重点:有序数对及平面内确定点的方法.
难点:利用有序数对表示平面内的点.
教学过程
一.问题探知
1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°东经125.7°”。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(orderedpair),记作(a,b)。利用有序数对,可以很准确地表示出一个位置。
与3大道例1如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?
6大道
5大道A
4大道
3大道B
2大道
1大道1街2街3街4街5街6街
分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:
(3,5)→(4,5)→(4,4)→(5,4)→(5,3);
(3,5)→(4,5)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(4,4)→(5,4)→(5,3);
(3,5)→(3,4)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(3,3)→(4,3)→(5,3);
1.在教室里,根据座位图,确定数学课代表的位置
2.教材65页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏
东45,距灯塔3km处。
例2如图是某次海战中敌我双方舰艇对峙示意图
,对我方舰艇来说:
1)北偏东方向上有哪些目标?要想确定
敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌
舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
四、课堂小结
1.为什么要用有序数对表示点的位置,没有顺序可以吗?
2.几种常用的表示点位置的方法.
五、作业布置教科书68页:1题