最新范文 方案 计划 总结 报告 体会 事迹 讲话 倡议书 反思 制度 入党

考研 线性代数 笔记精华 特征值特征向量

日期:2021-04-13  类别:最新范文  编辑:一流范文网  【下载本文Word版

考研 线性代数 笔记精华 特征值特征向量 本文关键词:特征值,线性代数,向量,特征,考研

考研 线性代数 笔记精华 特征值特征向量 本文简介:线代框架之特征值与特征向量1.定义:的特征矩阵.的特征多项式.的特征方程计算特征值的方法:(1)先由求矩阵A的特征值(共n个即几阶矩阵有几个,注意:算出的值用检验,以免计算错误)(2)再由求基础解系,即矩阵A属于特征值的线性无关的特征向量。性质:(1)(2)(3)。(4)常用结论:(1)注意,上三角

考研 线性代数 笔记精华 特征值特征向量 本文内容:

线代框架之特征值与特征向量

1.定义:

的特征矩阵

.的特征多项式

.的特征方程

计算特征值的方法:

(1)先由求矩阵A的特征值(共n个即几阶矩阵有几个,注意:算出的值用检验,以免计算错误)

(2)再由求基础解系,即矩阵A属于特征值的线性无关的特征向量。

性质:(1)

(2)

(3)。

(4)

常用结论:(1)

注意,上三角,下三角,对角矩阵的特征值就是矩阵主对角线上的元素。

注:的特征向量不一定是的特征向量.

(反过来则成立)与有相同的特征值,但特征向量不一定相同.

常用结论(2)是计算特征值的特殊方法——间接法的依据,利用相关联矩阵的特征值、特征向量之间的关系求解,计算量小

2.定义:。

相似矩阵的性质:

①(即有相同的特征多项式和特征值)注:特征向量不一定相同,是关于的特征向量,是关于的特征向量

,从而同时可逆或不可逆

⑤,

⑥;(若均可逆);;(为整数)

3.定义:如果与对角阵相似,则称A可对角化。

对称矩阵的性质:

特征值全是实数,特征向量是实向量;②

不同特征值对应的特征向量必定正交(

注:对于普通方阵,不同特征值对应的特征向量线性无关);

必可用正交矩阵相似对角化()即:任一实二次型可经正交变换化为标准形;

④一定有个线性无关的特征向量,可能有重的特征值,该特征值的重数=),;

对称矩阵A对角化的步骤:

(1)求出A的全部互不相等的特征值(是它的重数)

(2)对每个重特征值求方程的基础解系,得个线性无关的特征向量,再把它们正交化、单位化

(3)把这n个两两正交的单位特征向量构成正交矩阵P,便有

    以上《考研 线性代数 笔记精华 特征值特征向量》范文由一流范文网精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »一流范文网»最新范文»考研 线性代数 笔记精华 特征值特征向量
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 一流范文网 如对《考研 线性代数 笔记精华 特征值特征向量》有疑问请及时反馈。All Rights Reserved