好好学习,天天向上,一流范文网欢迎您!
当前位置:首页 >> 最新范文 内容页

新人教版高中数学必修2知识点总结

新人教版高中数学必修2知识点总结 本文关键词:知识点,必修,高中数学,新人,教版

新人教版高中数学必修2知识点总结 本文简介:高中数学必修2知识点总结第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点

新人教版高中数学必修2知识点总结 本文内容:

高中数学必修2知识点总结

第一章

空间几何体

1.1柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形

②侧面是梯形

③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

1.2空间几何体的三视图和直观图

(1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

(2)画三视图的原则:

长对齐、高对齐、宽相等

(3)直观图:斜二测画法

(4)斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。

(5)用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3

空间几何体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V=

S=

D

C

B

A

α

第二章

直线与平面的位置关系

2.1空间点、直线、平面之间的位置关系

(1)平面

平面的概念:

A.描述性说明;

B.平面是无限伸展的;

平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC。

点与平面的关系:点A在平面内,记作;点不在平面内,记作

点与直线的关系:点A的直线l上,记作:A∈l;

点A在直线l外,记作Al;

直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)

应用:检验桌面是否平;

判断直线是否在平面内

用符号语言表示公理1:

(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据

②它是证明平面重合的依据

(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

2.1.2

空间中直线与直线之间的位置关系

1

空间的两条直线有如下三种关系:

共面直线

相交直线:同一平面内,有且只有一个公共点;

平行直线:同一平面内,没有公共点;

异面直线:

不同在任何一个平面内,没有公共点。

2

公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线

=>a∥c

a∥b

c∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3

等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

4

注意点:

a

与b

所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;

两条异面直线所成的角θ∈(0,

);

当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

两条直线互相垂直,有共面垂直与异面垂直两种情形;

计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3

2.1.4

空间中直线与平面、平面与平面之间的位置关系

1、直线与平面有三种位置关系:

(1)直线在平面内

——

有无数个公共点

(2)直线与平面相交

——

有且只有一个公共点

(3)直线在平面平行

——

没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用a

α来表示

a

α

a∩α=A

a∥α

2.2.直线、平面平行的判定及其性质

2.2.1

直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:

A

α

b

β

=>

a∥α

a∥b

2.2.2

平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:

a

β

B

β

a∩b

=

P

β∥α

a∥α

b∥α

2、判断两平面平行的方法有三种:

(1)用定义;

(2)判定定理;

(3)垂直于同一条直线的两个平面平行。

2.2.3

2.2.4直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:

a∥α

a

β

a∥b

α∩β=

b

作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:

α∥β

α∩γ=

a

a∥b

β∩γ=

b

作用:可以由平面与平面平行得出直线与直线平行

2.3直线、平面垂直的判定及其性质

2.3.1直线与平面垂直的判定

1、定义

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

L

Α

P

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点:

a)定理中的“两条相交直线”这一条件不可忽视;

b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想

2.3.2平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

A

l

β

B

α

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3

2.3.4直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2性质定理:

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图

平面(公理1、公理2、公理3、公理4)

空间直线、平面的位置关系

直线与直线的位置关系

平面与平面的位置关系

直线与平面的位置关系

第三章

直线与方程

3.1直线的倾斜角和斜率

3.1倾斜角和斜率

1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=

0°.

2、

倾斜角α的取值范围:

0°≤α<180°.

当直线l与x轴垂直时,α=

90°.

3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是

k

=

tanα

⑴当直线l与x轴平行或重合时,α=0°,k

=

tan0°=0;

⑵当直线l与x轴垂直时,α=

90°,k

不存在.

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

4、

直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

斜率公式:

k=y2-y1/x2-x1

3.1.2两条直线的平行与垂直

1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意:

上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2

2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

3.2.1

直线的点

斜式方程

1、

直线的点斜式方程:直线经过点,且斜率为

2、、直线的斜截式

方程:已知直线的斜率为,且与轴的交点为

3.2.2

直线的两点式方程

1、直线的两点式方程:已知两点其中

y-y1/y-y2=x-x1/x-x2

2、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中

3.2.3

直线的一般式方程

1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)

2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式

3.3.两直线的交点坐标

1、给出例题:两直线交点坐标

L1

:3x+4y-2=0

L1:2x+y

+2=0

解:解方程组

x=-2,y=2

所以L1与L2的交点坐标为M(-2,2)

3.3.2

两点间距离

两点间的距离公式

3.3.3

点到直线的距离公式

1.点到直线距离公式:

点到直线的距离为:

2、两平行线间的距离公式:

已知两条平行线直

线和的一般式方程为:,

:,则与的距离为

第四章

圆与方程

4.1.1

圆的标准方程

1、圆的标准方程:

圆心为A(a,b),半径为r的圆的方程

2、点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)<,点在圆内

4.1.2

圆的一般方程

1、圆的一般方程:

2、圆的一般方程的特点:

(1)①x2和y2的系数相同,不等于0.

②没有xy这样的二次项.

(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.

(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1

圆与圆的位置关系

1、用点到直线的距离来判断直线与圆的位置关系.

设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:

(1)当时,直线与圆相离;(2)当时,直线与圆相切;

(3)当时,直线与圆相交;

4.2.2

圆与圆的位置关系

两圆的位置关系.

设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:

(1)当时,圆与圆相离;(2)当时,圆与圆外切;

(3)当时,圆与圆相交;

(4)当时,圆与圆内切;(5)当时,圆与圆内含;

4.2.3

直线与圆的方程的应用

直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

;;

注:如果圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。

1、利用平面直角坐标系解决直线与圆的位置关系;

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论.

(3)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为

(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=

r2

(课本命题的推广).

4.3.1空间直角坐标系

1、点M对应着唯一确定的有序实数组,、、分别是P、Q、R在、、轴上的坐标

2、有序实数组,对应着空间直角坐标系中的一点

3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。

4.3.2空间两点间的距离公式

1、空间中任意一点到点之间的距离公式

TAG标签: