〖大纲要求〗
1.理解二次函数的概念;
2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4.会用待定系数法求二次函数的解析式;
5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是,对称轴是,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.
〖考查重点与常见题型〗
1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,
则m的值是
2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数
y=kx2+bx-1的图像大致是()
yyyy
11
0xo-1x0x0-1x
ABCD
3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。
4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
5.考查代数与几何的综合能力,常见的作为专项压轴题。
习题1:
一、填空题:(每小题3分,共30分)
1、已知A(3,6)在第一象限,则点B(3,-6)在第象限
2、对于y=-,当x>0时,y随x的增大而
3、二次函数y=x2+x-5取最小值是,自变量x的值是
4、抛物线y=(x-1)2-7的对称轴是直线x=
5、直线y=-5x-8在y轴上的截距是
6、函数y=中,自变量x的取值范围是
7、若函数y=(m+1)xm2+3m+1是反比例函数,则m的值为
8、在公式=b中,如果b是已知数,则a=
9、已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是
10、某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是
二、选择题:(每题3分,共30分)
11、函数y=中,自变量x的取值范围()
(A)x>5(B)x<5(C)x≤5(D)x≥5
12、抛物线y=(x+3)2-2的顶点在()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为()
(A)0(B)1(C)2(D)3
14、下列各图中能表示函数和在同一坐标系中的图象大致是()
(A)(B)(C)(D)
15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为()
(A)(-3,5)(B)(3,5)(C)(-3,-5)(D)(3,-5)
16.下列抛物线,对称轴是直线x=的是()
(A)y=x2(B)y=x2+2x(C)y=x2+x+2(D)y=x2-x-2
17.函数y=中,x的取值范围是()
(A)x≠0(B)x>(C)x≠(D)x<
18.已知A(0,0),B(3,2)两点,则经过A、B两点的直线是()
(A)y=x(B)y=x(C)y=3x(D)y=x+1
19.不论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是()
(A)2米(B)3米(C)4米(D)5米