“平行四边形面积的计算”说课
一、教材简析
“平行四边形面积的计算”是九年义务教育苏教版六年制小学数学第八册第四单元第42页——44页的学习内容。教材从一年级第一册起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第七册教材中安排了平行四边形、三角形和梯形的认识,清楚了解其特征及底和高的概念。而本册(第八册)教材中"平行四边形面积的计算"是在学生掌握上述内容的基础上安排的。使整个安排体现了线形的、层递的、系统的体系,这也完全吻合了学生的认知规律和心理特点。
因此,学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
二、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
三、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。
教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。
四、教学对象分析
建构主义认为,虽然学生要学习的数学都是前人已经建造好了的,但对学生来说,仍是全新的、未知的。需要每个人再现类似的创造的过程来形成。即学生用自己的活动对人类已有的数学知识建构起自己的正确理解,而不是去仔细地吸收课本上的或教师叙述的现成结论。应该是一个学生亲身参与的充满丰富、生动的概念或思想活动的组织过程。
随着信息社会的飞速发展,小学中年级的学生已经掌握了必要的信息技术。“几何画板”的简单运用与操作已经成为了小学生形体知识的认知和探究工具。
在课堂上,学生很容易产生一些“奇异妙想”,“几何画板”凭着强大的交互性给学生以参与的机会,让学生自己操作,实现自我学习,想象力得到充分发挥,是学生成为一个真正的研究者。
“几何画板”凭借着信息平台的优势,提供了学生反复学习的机会,在学习中,反复使用它,使学生注意力更为集中,极大地激发了学生学习兴趣,调动学生学习的积极性。
学生在平行四边形的面积公式推导过程中,依据原有知识体系,以“几何画板”为探索工具,通过采用剪—移—拼的方法,对平行四边形进行转化,学生将很容易自主发现规律,及平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。
五、基本理念
整堂课在建构主义的理论指导下,充分贯彻新课程标准,从数学自身特点出发,遵循学生学习数学的心理规律,让学生从已有的经验出发,通过各种方式,自主探索,自我研究,积极完成知识的意义建构过程。
六、教法阐述、学法指导
本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁
移和融合。七、教学准备
提供“几何画板”软件平台和相关课件,制作一个开放式的、且具有人文性的数学专题网站,为学生搭建好协作学习的舞台。
八、教学过程
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:
(一)利用“几何画板”创设情境,激情导入
首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。
此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。
(二)、利用“几何画板”大胆放手导学达标
1、数格子算面积。
2、猜想平行四边形的面积可能和什么有关?
3、证明猜想
在证明猜想是否正确时,大胆放手,指导学生在“几何画板”上操作,并小组合作完成填空:长方形的面积与原平行四边形的面积_________,长方形的长相当于平行四边形的________,
因为长方形的面积=_________,所以平行四边形的面积=_________。
经师生互动、交流,得出了平行四边形的面积计算公式:平行四边形的面积=底*高。
建构主义提倡在教师指导员下的以学习者为中心的学习,就是强调学习者在学习过程中的认知主体地位。应用“几何画板”,可以创设情境,让学生主动参与到数学活动中,亲自去体验,更强烈地激发学生装的学习兴趣,可以更全面、更方便地揭示新旧知识之间的联系,为学生实现“意义建构”创造了良好的条件。
(三)、利用网络,精心设计形式多样的练习。
传统的板演练习只能暴露几个学生的学习情况,代表性不强,在网络教室中,教师可以根据需要调阅任意一个学生的学习情况,以便及时地加以纠正。在本课中,我把练习设计设计成“试试你的本领”。让学生自由上网自由选题进行训练。同学可以调阅学习伙伴的学习情况。也可以利用网络进行讨论。能力差点的学生可以得到更多的关心,真正体现生生互动。
(四)、归纳总结,拓展延伸
教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。教师顺势揭示了课题,突出重点。
课末提出了“你还能用折纸或其他方法证明平行四边形的面积计算公式吗?”。鼓励学生想出多种方法来证明平行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。
在课的组织形式上,我们将通过“师生互动”、“生生互动”和“人机对话”等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到“信息互补”、共同提高的目的。
纵观本课设计,我们则坚持以“学生为本”“以学定教”的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。