高中各科目的学习对同学们提高综合成绩非常重要,大家一定要认真掌握,精品小编为大家整理了高三数学说课稿之直线和圆的位置关系,希望同学们学业有成!
教学目的
〖知识目标〗
1.掌握直线与圆相交、相切、相离三种位置关系,并会求圆的切线方程及与弦长等有关直线与圆的问题。
2.在解决直线与圆的位置关系的问题时,常通过”数”与”形”的结合,充分利用圆心的几何性质、简化运算.如利用圆心到直线的距离讨论直线与圆的位置关系,利用过切点的半径、弦心距及半径构成的三角形去解决与弦长有关的问题.
〖能力目标〗培养数形结合的思想、多方位多渠道解决问题能力。
教学重点与难点
重点:三种位置关系的判断方法、过一点的圆的切线的求法以及弦长问题的解决方法,即圆心到直线的距离在圆与直线关系问题中的运用。
难点:利用数形结合的思想分析问题、解决问题。
教学过程:
一、课堂引入:
前面我们复习了圆的方程、点与圆的位置关系,这课我们复习用圆的方程来解决直线与圆的位置关系。请先做以下练习(教师巡堂以便了解课下预习情况)
(1)、判断直线4x-3y=5与圆x+y=25的位置关系
(2)、求圆x+y=25的过点P(3,4)的切线方程.
(3)、求圆x+y=25的过点P(5,4)的切线方程.
(4)、求圆x+y=25被直线4x-3y-20=0所截得的弦长。
(这一部分在引入正课后直接用多媒体投影给出,并由学生快速运算,然后提问结果)
二、知识梳理:
提出问题:直线与圆有几种位置关系,用什么方法来判断?
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.
②Δ=0,直线和圆相切.
③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①d
②d=R,直线和圆相切.
③d>R,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.先判断点与圆的位置关系,再用切线的性质求方程。
1)若点p(x,y)在圆上,则圆x+y=r:的切线方程为xx+yy=r,圆(x-a)+(y-b)=r的切线方程为(x-a)(x-a)+(y-b)(y-b)=r
2)若点p(x0,y0)在圆外:利用圆心到直线的距离等于半径将切线的斜率求出来,再写出切线的方程(斜率不存在的切线方程不要遗漏).
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
(师生一起归纳,并由教师板书)
小编为大家整理的高三数学说课稿之直线和圆的位置关系就到这里了,希望同学们认真阅读,祝大家学业有成。
同类热门::
高三数学说课稿之《两条直线平行与垂直的判定》
高三数学说课稿之《不等式的证明》