好好学习,天天向上,一流范文网欢迎您!
当前位置:首页 >> 最新范文 内容页

Ku波段卫星通信雨衰计算及分析外文翻译

Ku波段卫星通信雨衰计算及分析外文翻译 本文关键词:外文,卫星通信,波段,翻译,计算

Ku波段卫星通信雨衰计算及分析外文翻译 本文简介:Ku波段卫星通信雨衰计算及分析徐慨、向顺祥、黄林书电子工程系海军工程大学中国武汉摘要:使用雨量计、频谱分析仪和其他设备,根据模拟结果,测量和分析了武汉市降雨率及雨衰对Ku波段卫星通信信号的影响。分析了降雨率和雨衰的关系,并将结果与国际电信联盟无线电通信部门(ITU-R)估计值进行了比较,分析了实际测

Ku波段卫星通信雨衰计算及分析外文翻译 本文内容:

Ku波段卫星通信雨衰计算及分析

徐慨、向顺祥、黄林书

电子工程系

海军工程大学

中国武汉

摘要:使用雨量计、频谱分析仪和其他设备,根据模拟结果,测量和分析了武汉市降雨率及雨衰对Ku波段卫星通信信号的影响。分析了降雨率和雨衰的关系,并将结果与国际电信联盟无线电通信部门(

ITU-R)

估计值进行了比较,分析了实际测量值与预测值之间的不同之处。利用测得的数据,对不准确的预测模型,提出了一个改进算法,证明

ITU-R提出的预测模型是正确的。实验结果表明,有必要通过长时间的测量,获得足够的数据,来确定不同站点雨衰与降雨率之间关系。

关键词:频谱分析仪、卫星通信、雨衰、预测模型

I

引言

在卫星通信链路设计,必须计算链路的效率和冗余。因为信号可能会被吸收和过滤,所以必须提供冗余或一些对抗措施,如自适应功率控制,通过分集接收来提高链路效率。然后有两个问题:应该提供多少冗余来满足链路的有效性要求;应采取什么措施来对抗雨衰。

虽然国内外已经做了许多理论的实验研究,但是对于不同的地域链路的设计要求,实验结果不是很符合。

在论文中,通过一段时间测量武汉的降雨以及Ku波段卫星信号衰减,绘制了降雨和信号衰减之间的关系图。在比较获得的关系图和ITU-R给出的模型曲线后,证明ITU-R预测模型在不同地区之间存在一些错误,因此有必要进行一些测试,对ITU-R预测模型做一些修改。

II

测量系统的原理

图一显示了测量系统的原理。该图的左侧的是降雨衰耗估算

。下行链路信号由天线接收,并且其频率被转增下来的低噪声B转换,并且随后转到频谱。最后,通过RS-232接口,信号电压被保存到计算机。菱形天线

:0.6m,LNB振荡器频率

11300MHz

;输入频率:12.25GHZ~12.75GHZ;输出频率:950MHZ~1450MHZ;因为它是垂直极化测量信号,电源电路是采用12.5

V直流

;光谱频率范围:3KHZ~

3GHZ,10个值是每分钟收集。

右侧是降雨量的测量。这个雨量计的测量精度:0.1毫米~

7毫米/小时,运行电压:9

~

24

v直流电源提供的收集器.雨量计得到了降雨的每分钟(毫米),并发送数据在计算机中的数据收集器。当数据乘以60,那么降雨的小时是有(毫米/小时)。

测试地点:武汉,纬度:30.52°;经度:114.31°;高度:23.3米测试频率:12.333GHz;仰角的天线:48.45°。

Fig.1

实验系统结构图

III

测试结果及建模分析

A.

ITU-R降雨衰减模型

A

=g×L

(dB)

(1)

g

=

a×Rb

(dB/km)

(2)

其中,L是降雨的有效路径,

g是降雨衰减比,

R是雨量比,

a,b是相关系数,其值随频率不同变化。

B.阳光下计算放的信号的参考电平

吸光度的衰减在雨天、云和大气的变化是缓慢的。大气吸收有氧气和水蒸气组成。其中水的蒸气在不同的天气变化最大。相比较而言,吸收衰减在慢衰减中是最主要的因素。

为了去除噪声和闪烁的影响,分析了在下雨之前三天和下雨之后三天的晴朗天气所有的信号电平,得到了晴朗天气的信号参考电平As。

C.计算雨衰

取在1分钟内获得的10个信号得平均值,就得到了雨中每分钟的信号电平。然后每分钟雨衰如下:

A

=

As

-

Ar

(dB)

其中,A是指雨衰,As是晴朗天气的信号参考电平,Ar是雨中的每分钟信号电平。

D.测量结果分析

图2表示的是武汉地区2008-05-03

的降雨情况。水平轴是时间,垂直是雨衰减率。信号随时间衰减如图3所示。比较两个图,

可以得出以下结论:

(1)降雨越大,雨衰也越大。最大的降雨发生在5月3号的21:00,恰好信号衰减发生在那个时候

(2)信号衰减是不仅发生在下雨的时候,下雨后也有,因为在某些方面天空中的云也使信号发生衰减。例如,5月3日在17:00-18:00,虽然不下雨,但很明显,仍然有信号衰减。

(3)

雨衰减率期间的降雨量是相对持久。在相同的降雨,信号由降雨引起的为20的衰减分钟显然是大于一个或两分钟。

Fig2.

武汉降雨环境

Fig

3

信号衰减

E.误差分析

雨衰减和信号衰减之间的关系如图4所示。水平轴是降雨,垂直轴的是雨衰减率。“*”曲线是降雨试验测得,“e”曲线是在ITU-R提供的公式模型的基础上绘制。“△”曲线是草拟的测量值处理的最小二乘方法算法。如图所示,由ITU-R提供雨衰模型与武汉地区实际情况有很大不同,并且随着降雨量的增加误差也增大。

图4:雨衰之间的关系

Fig

5.

误差曲线

IV

改进后的算法模型

修改后的ITU-R雨衰模型:

Ap=Aitu-r—Perror

其中,Ap是修正后的雨衰减,Aitu-r是ITU-R雨衰模型预测的雨衰,Perror是修正因子。

图5是误差曲线。“*”是图4所提供的误差值曲线,曲线是由最小二乘法得到的。表达式为:

Perror=-0.0006*R*R+0.1308*R-0.1847

(dB)

其中,R是降雨量。则修改后的预测模型是:

Ap=Aitu-r—(-0.0006*R*R+0.1308*R-0.1847

)

(dB)

V.

结论

在本文中,利用相关设备测量了降雨量和Ku波段卫星通信信号衰减的值。通过比较测量值和ITU-R提供的雨衰模型,发现了测量值和预测值之间的一些不同。通过分析测量数据,提出了一个修改算法来修正ITU-R提供的雨衰模型。结果表明,随着测得的数据的数量的增加这个修改后的数据会与实际值更吻合。

信号衰减与降雨持续时间有关。同样的降雨比,持续20分钟降雨引起的信号衰减比续1分钟或2分钟降雨大得多。与此同时,真正的

情况是非常复杂的、多方面的,特别是决定雨衰减一些因素,如雨滴的大小,降水在整个衰减路径的分布、风速和温度,他们都对雨衰有影响。所以我们应该建立一个长期的观察机制,来获得降雨衰减和降雨的足够数据。这些数据将是未来研究ka波段卫星通信重要的基础。

参考文献

[

1

]

Zulfajri

B

H,Kiyotaka

F,Kenichi

I,and

Mitsuo

T。日本九州岛Ku波段雨衰测量,[

J

]。IEEE天线与无线传播快报,2002(1):116-119.。

[2]

J.Kang,H.Echigo

K.Ohnuma,S.Nishida,R.Sato,“VSAT系统三年测量和在Ku波段雨衰卫星通道CCIR估计”,IEICE

Trans.Commun,vol.E79-B,pp.1546-1558,1997年10月。

[3]Amaya

C,Rogers

D

V亚太海事展气候变化Ka波段卫星地球链接降雨衰减特性[J]。IEEE

Trans.

On

Microwave

Theory

and

Techniques,2002,50(1):

41-45

[4]

Dissanayake

A,Allnuh

J.雨衰减和其他传播障碍以及地球卫星路径的预测模型[J].IEEE

Trans.

On

Antennas

andPropagation,1997,45(10):

1546-1557.

[5]

Dong

You

Choi,使用1小时降雨率无1分钟降雨率转换的雨衰预测模型[J]。IJCSN计算机科学国际期刊和网络安全报,2006(6):130-133

[6]

Rec.ITU-R

PN.618-8,地球电信系统空间设计方法需要传播数据和预测方法[S].ITU,Geneva,2003.

作者:许凯(M

90)出生于1965年,江苏,中国。他在2001年成为联营公司教授。他的兴趣包括波的传播,散射和卫星通信系统。

外文原文:

Measuring

and

Analyzer

of

Rain

Attenuation

for

Satellite

Communication

in

Ku

band

XU

kai,Xiang

shunxiang,Huang

Linshu

Electronics

Engineering

Department,Naval

Univ.

of

Engineering,Wu

han,China

Abstract—Using

a

rain

gauge,spectrum

analyzer

and

other

equipments,rain

rate

and

rain

attenuation

for

the

satellite

communication

signals

in

Ku

band(14/12GHz)

in

Wuhan

city

are

measured

and

analyzed

simultaneously

according

to

simulations.

The

relation

between

rain

attenuation

and

rain

rate

are

analyzed,the

result

is

compared

with

the

estimated

International

Telecommunication

Union

Radio

Communication

Sector

(ITU-R)

and

the

difference

between

the

prediction

and

the

measuration

is

analyzed.

To

the

inaccuracy

of

the

forecasting

model,a

modified

algorithm

is

presented

and

by

using

the

data

measured,the

ITU-R

forecasting

model

is

corrected.

The

experiment

results

suggest

it

is

necessary

to

measure

for

long

time

to

get

enough

data

of

the

relation

between

rain

attenuation

and

rain

rate

at

differentstations.

Keywords:spectrum

analyzer;

satellite

communication;

rain

attenuation;forecasting

model

I.

INTRODUCTION

In

the

satellite

communication

link

designing,efficiency

and

redundancy

of

link

must

be

computed.For

the

signal

may

be

absorbed

and

glittering,enough

redundancy

or

some

counter-measure

must

be

provided,such

as

the

adaptive

power

control,receiving

by

dividing

to

improve

the

efficiency

of

link[1].

Then

there

are

two

problems:

how

much

does

the

link

redundancy

should

be

provided

to

meet

the

demand

of

the

efficiency

of

the

link;

what

kind

of

counter

measure

to

rain

attenuation

should

be

taken.

Although

many

theoretical

an

experimental

study

have

been

done

in

home

or

oversea[2-5],the

results

are

still

not

so

satisfied

the

design

demand

from

various

district

links.

In

the

paper,by

measuring

on

the

rainfall

in

Wuhan

and

the

satellite

signal

attenuation

of

Ku

band

for

a

period,the

relationship

shown

in

graph

between

the

rainfall

and

its

attenuation

are

got.

After

the

comparison

between

the

result

graph

and

the

modeling

curve

given

by

the

ITU-R,it

is

proved

that

inaccuracy

exist

in

the

ITU-R

forecasting

to

the

rainfall

in

various

district

then

it

is

necessary

to

take

some

testing

and

do

some

modification.

II.

PRINCIPLE

OF

MEASUREMENT

SYSTEM

Principle

of

measurement

system

is

shown

in

fig.1.

The

left

of

the

figure

are

the

rainfall

attenuation

measurement.

The

downlink

signal

is

received

by

the

antenna

and

its

frequency

are

conversed

down

by

the

Low

Noise

B

conversion

and

then

goes

to

the

spectrum.

At

last

it

saves

the

signal

voltage

to

the

computer

through

the

RS-232

interface.

Antenna

diamond:0.6m;

LNB

oscillator

frequency:

11300MHz

input

frequency:12.25GHz~12.75GHz;output

frequency:950MHz~1450MHz;since

it

is

the

vertical

polarized

signal

measured,the

power

supply

circuit

is

adapted

the

12.5V

DC;

the

spectrum

frequency

range

:3KHz~3GHz,

10

values

are

collected

per

minute.

The

right

is

the

rainfall

measurement.

The

pluviometer’s

measure

precision:0.1mm~7mm/h;

denotation

error

one-off

rainfall

?ü10mm

,error?ü±0.2mm,one-off

rainfall

>10mm,error?ü±2%;

running

voltage:9~24V

DC

are

provided

by

the

collector.

The

pluviometer

gets

the

rainfall

per

minute(mm)and

send

the

data

to

the

computer

by

the

data

collector.

When

the

data

are

multiplied

by

60,then

the

rainfall

of

that

hour

is

got(mm/h).

Testing

place:

Wuhan;

latitude:30.52°;longitude114.31°

altitude

23.3m

testing

frequency

:12.333GHz;

elevation

of

the

antenna:48.45°。

Fig.1

Experimental

system

structure

III.

TESTING

RESULT

AND

MODELING

ANALYSIS

A.

ITU-R

rainfall

attenuation

model[6]

A

=g×L

(dB)

(1)

g

=

a×Rb

(dB/km)

(2)

Where,L

is

the

rainfall

effective

path,g

is

the

ratio

of

rainfall

attenuation,R

is

the

ratio

of

rainfall,a

、b

are

correlative

coefficient.

the

value

is

varied

with

the

different

frequency.

B.

Calculating

of

the

signal

referenced

level

in

sunshine

The

change

of

absorbance

attenuation

of

rain,cloud

and

atmosphere

is

slow

change.

Atmosphere

absorption

are

made

of

oxygen

and

water

vapors,among

them

the

water

vapors

are

varied

mostly

with

the

different

weather.

Taking

one

with

another,absorption

attenuation

are

the

most

important

factors

among

slow

change

attenuations.

To

remove

the

influence

of

the

noise

and

scintilla,the

mean

is

got

from

all

the

signal

levels

in

sunshine

weather

in

the

three

days

before

and

after

the

rain,the

signal

referenced

level

in

sunshine

weather

s

A

is

obtained

then

.

C.

Calculating

the

rain

attenuation

To

take

the

average

of

the

10

signal

levels

which

are

adapted

in

one

minute,the

signal

level

per

minute

in

rain

is

obtained

.Then

the

rain

attenuation

of

the

minute

is

got

as

follows:

A

=

As

-

Ar

(dB)

(3)

Where,A

is

the

rain

attenuation,As

is

the

signal

referenced

level

in

sunshine,r

A

is

the

signal

level

per

minute

in

rain.

D.

Measuring

Result

Analysis

It

is

shown

in

figure.2

that

the

raining

circumstance

in

Wuhan

district

on

2008-05-03.The

horizontal

axes

is

time,the

vertical

is

the

rain

attenuation

ratio.

The

signal

attenuation

corresponding

with

the

time

is

shown

in

figure.3.

Compared

the

two

graphs,these

conclusion

can

be

drawn:

(1)

The

heavier

is

the

rainfall,the

greater

is

the

corresponding

rain

attenuation

ratio.When

the

maximum

of

rainfall

happened

at

about

21:00

hour

on

May

3rd,the

signal

attenuation

happened

just

at

that

time

then.

(2).The

signal

attenuation

are

not

only

happen

during

the

rain

time,but

also

after

the

rain,because

the

cloud

in

sky

also

causes

the

attenuation

in

some

respects.

For

instance,during

17:00

-18:00

on

May

3rd,though

there

is

not

rain,but

it

is

obvious

that

there

is

still

signal

attenuation.

(3)

The

rain

attenuation

ratio

is

relative

with

the

period

which

the

rainfall

is

lasting.

To

the

same

rainfall,the

signal

attenuation

which

is

caused

by

the

rainfall

for

20

minutes

is

clearly

greater

than

that

for

one

or

two

minutes.

Fig2.

Raining

circumstance

inWuhan

Fig

3

Signal

attenuation

with

the

time

E.

Error

analysis

The

relationship

between

the

rain

attenuation

and

the

signal

rain

attenuation

is

shown

in

fig.4.

The

horizontal

axes

is

rainfall,the

vertical

is

the

rain

attenuation

ratio.

“*”-curve

is

the

rainfall

measured

in

experiment,“?e”-curve

is

drawn

based

on

the

formula

provided

by

the

ITU-R

model.

“△”-curve

is

drawn

up

of

measured

value

processed

by

the

method

of

Least

Squares

Algorithm.

As

shown,the

rain

attenuation

model

provided

by

ITU-R

is

greatly

varied

from

the

real

situation

in

Wuhan

district

and

the

error

increases

with

the

rainfall’s

increasing

IV.

MODIFIED

ALGORITHM

TO

THE

MODEL

To

modify

the

rain

attenuation

model

from

ITU-R,it

is

defined

as:

Ap=Aitu-r—Perror

(4)

Where,P

A

is

the

rain

attenuation

after

compensating,ITU

R

A

-

is

the

forecasted

attenuation

from

the

ITU-R

model,error

P

is

the

compensating

factor.

Fig.5

is

the

error

curve.

“*”is

the

error

value

provided

by

the

result

of

fig.4

and

curve

is

drawn

up

by

the

method

of

Least

Squares

Algorithm,the

expression

is:

Perror=-0.0006*R*R+0.1308*R-0.1847

(dB)

Where,R

is

the

rainfall.

Then

the

modified

rainfall

forecasting

model

is:

Ap=Aitu-r—(-0.0006*R*R+0.1308*R-0.1847

)

Fig

4

Relationship

between

the

rain

attenuation

Fig

5.

The

error

curve.

V.

CONCLUSION

In

this

paper,the

rainfall

and

Ku-band

satellite

signal

attenuation

are

measured

by

using

the

equipments.

And

then

the

measured

value

is

compared

with

the

rainfall

model

provided

by

the

ITU-R

and

some

differences

are

found

between

the

measured

and

forecasted.

We

propose

a

modified

algorithm

to

modify

the

model

provided

by

ITU-R

by

analyzing

the

measured

data.

The

result

shows

that

after

modifying

data

will

be

more

consistent

with

the

real

value

with

the

increasing

of

the

measured

data

number.

Signal

attenuation

is

related

with

the

rainfall

lasting

period.

For

the

same

rainfall

ratio,the

signal

attenuation

caused

by

rainfall

lasting

for

20

minutes

is

greater

then

the

one

for

one

or

two

minutes.

Meanwhile,the

real

situation

is

very

complex

and

various,especially

some

factors

decided

the

rain

attenuation,such

as

the

dimension

of

raindrop,the

rainfall

distributing

on

the

whole

attenuation

path,wind

velocity

and

temperature,they

are

all

even.

Then

it

is

necessary

for

us

to

set

up

a

long-time

observation

mechanism

to

obtain

enough

data

about

rainfall

attenuation

and

rainfall.

These

data

will

be

the

important

foundation

in

the

research

for

the

Ka-band

satellite

communication

in

the

future.

REFERENCES

[1]Zulfajri

B

H,Kiyotaka

F,Kenichi

I,and

Mitsuo

T.Measurement

of

Ku-Band

Rain

Attenuation

Using

Several

VSATs

in

Kyushu

Island,Japan[J].

IEEE

Antennas

and

Wireless

Propagation

Letters,2002(1):

116-119.

[2]J.Kang,H.Echigo,K.Ohnuma,S.Nishida,and

R.Sato,”Three-year

measurement

by

VSAT

system

and

CCIR

estimation

for

rain

attenuation

in

Ku-band

satellite

channel,”IEICE

Trans.Commun.,vol.E79-B,pp.1546-1558,Oct.1997.

[3]Amaya

C,Rogers

D

V.

Characteristics

of

Rain

Fading

on

Ka-Band

Satellite–Earth

Links

in

a

Pacific

Maritime

Climate[J].

IEEE

Trans.

On

Microwave

Theory

and

Techniques,2002,50(1):

41-45.

[4]

Dissanayake

A,Allnuh

J.

A

Prediction

Model

that

RainAttenuation

and

other

Propagation

Impairments

alongEarth-Satellite

Path[J].

IEEE

Trans.

On

Antennas

andPropagation,1997,45(10):

1546-1557.

[5]

Dong

You

Choi,Rain

attenuation

prediction

model

by

using

the

1-hour

rain

rate

without

1-minute

rain

rate

conversion[J].IJCSNS

International

Journal

of

Computer

Science

and

Network

Security,2006(6):130-133.

[6]

Rec.ITU-R

PN.618-8,“Propagation

data

and

prediction

methods

required

for

the

design

of

earth-space

telecommunications

systems“[S].ITU,Geneva,2003.

Author:

Xu

Kai(M’90-)

was

born

in

1965,in

Jiangsu,China.

He

became

an

associate-Professor

in

2001.His

interests

include

wave

propagation,scattering

and

satellite

communication

system.1097

TAG标签: