只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由小编为您提供的初二数学下册期末试题(含答案),祝您学习愉快!
一、细心选一选(每小题3分,共30分)
1.如图,∠1与∠2是()
A.同位角B.内错角
C.同旁内角D.以上都不是
2.已知等腰三角形的周长为29,其中一边长为7,则该等腰三角形的底边()
A.11B.7C.15D.15或7
3.下列轴对称图形中,对称轴条数最多的是()
A.线段B.角C.等腰三角形D.等边三角形
年龄13141525283035其他
人数30533171220923
4.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()
A.平均数B.众数C.方差D.标准差
5.下列条件中,不能判定两个直角三角形全等的是()
A.两个锐角对应相等B.一条直角边和一个锐角对应相等
C.两条直角边对应相等D.一条直角边和一条斜边对应相等
6.下列各图中能折成正方体的是()
7.在样本20,30,40,50,50,60,70,80中,平均数、中位数、众数的大小关系是()
A.平均数>中位数>众数B.中位数<众数<平均数
C.众数=中位数=平均数D.平均数<中位数<众数
8.如图,在Rt△ABC中,∠ACB=90O,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为()
A.64B.36C.82D.49
9.如图∠AOP=∠BOP=15o,PC‖OA,PD⊥OA,若PC=10,则PD等于()
A.10B.C.5D.2.5
10.如图是一个等边三角形木框,甲虫在边框上爬行(,端点除外),设甲虫到另外两边的距离之和为,等边三角形的高为,则与的大小关系是()
A.B.
C.D.无法确定
二、专心填一填(每小题2分,共20分)
11.如图,AB‖CD,∠2=600,那么∠1等于.
12.等腰三角形的一个内角为100°,则它的底角为_____.
13.分析下列四种调查:
①了解我校同学的视力状况;②了解我校学生的身高情况;
③登飞机前,对旅客进行安全检查;④了解中小学生的主要娱乐方式;
其中应作普查的是:(填序号).
14.一个印有“创建和谐社会”字样的立方体纸盒表面
展开图如图所示,则与印有“建”字面相对的表面上
印有字.
15.如图,Rt△ABC中,CD是斜边AB上的高,∠A=25°,
则∠BCD=______.
16.为了发展农业经济,致富奔小康,养鸡专业户王大伯xxxx年养了xxxx只鸡,上市前,他随机抽取了10只鸡,统计如下:
质量(单位:kg)22.22.52.83
数量(单位:只)12421
估计这批鸡的总质量为__________kg.
17.直角三角形斜边上的中线长为5cm,则斜边长为________cm.
18.如图,受强台风“罗莎”的影响,张大爷家屋前9m远处有一棵大树,从离地面6m处折断倒下,量得倒下部分的长是10m,大树倒下时会砸到张大爷的房子吗?
答:(“会”和“不会”请选填一个)
19.如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点,过点O作OE‖AB交于BC点O,OF‖AC交BC于点F,BC=xxxx,则△OEF的周长是______.
20.如图,长方形ABCD中,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EDB落在同一平面内),则A、E两点间的距离为______.
三、用心答一答(本小题有7题,共50分)
21.(本题6分)如图,∠1=100°,∠2=100°,∠3=120°
求∠4的度数.
22.(本题6分)下图是由5个边长为1的小正方形拼成的.
(1)将该图形分成三块,使由这三块可拼成一个正方形(在图中画出);
(2)求出所拼成的正方形的面积S.
23.(本题8分)如图,AD是ΔABC的高,E为AC上一点,BE交AD于F,且有DC=FD,AC=BF.
(1)说明ΔBFD≌ΔACD理由;
(2)若AB=,求AD的长.
24.(本题5分)如图,已知在△ABC中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)
25.(本题9分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)
1号2号3号4号5号总分
甲班891009611897500
乙班1009611091104500
统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:
(1)计算两班的优秀率;(2)求两班比赛数据的中位数;
(3)计算两班比赛数据的方差;
(4)你认为应该定哪一个班为冠军?为什么?
26.(本题6分)如图是一个几何体的三视图,求该几何体的体积(单位:cm,取
3.14,结果保留3个有效数字).
27.(本题10分)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA=PB=PC,则△PMC是________三角形;
(3)若PA:PB:PC=1::,试判断△PMC的形状,并说明理由.
四、自选题(本题5分,本题分数可记入总分,若总分超过100分,则仍记为100分)
28.在Rt⊿ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设⊿ABC的面积为S,周长为.
(1)填表:
三边长a、b、c
a+b-c
3、4、52
5、12、134
8、15、176
(2)如果a+b-c=m
,观察上表猜想:=,(用含有m的代数式表示);
(3)说出(2)中结论成立的理由.
八年级数学期中试卷参考答案及评分意见
一、精心选一选
题号12345678910
答案BBDBADCACA
二、专心填一填
11.120°12.40°13.③14.社15.25°16.500017.1018.不会
19.xxxx20.2
三、耐心答一答
21.(本题6分)解:∵∠2=∠1=100°,∴m‖n.……3分
∴∠3=∠5.∴∠4=180°-∠5=60°…3分
22.(本题6分)
解:(1)拼图正确(如图);……………………3分
(2)S=5.…………………………………3分
23.(本题8分)
解:(1)∵AD是ABC的高,∴△ACD与△BFD都是直角三角形.………1分
在Rt△ACD与Rt△BFD中
∵
∴Rt△ACD≌Rt△BFD.…………………………………………………3分
(2)∵Rt△ACD≌Rt△BFD,
∴AD=BD.…………………………………………………………………1分
在Rt△ACD中,∵AD2+BD2=AB2,∴2AD2=AB2,∴AD=.……3分
24.(本题5分)
给出一种分法得2分(角度标注1分).
25.(本题9分)
解:(1)甲班的优秀率:2÷5=0.4=40%,乙班的优秀率:3÷5=0.6=60%…1分
(2)甲班5名学生比赛成绩的中位数是97个
乙班5名学生比赛成绩的中位数是100个………………………2分
(3),.………………………2分,…………………………2分
∴S甲2>S乙2
(4)乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.…2分
26.(本题6分)解:该几何体由长方体与圆柱两部分组成,
所以,V=8×6×5+=240+25.6≈320cm3……………6分
27.(本题10分)解:(1)AP=CM.…………………………………1分
∵△ABC、△BPM都是等边三角形,∴AB=BC,BP=BM,∠ABC=∠PBM=600.
∴∠ABP+∠PBC=∠CBM+∠PBC=600,∴∠ABP=∠CBM.
∴△ABP≌△CBM.∴AP=CM.……………………………………3分
(2)等边三角形………………………………………………………2分
(3)△PMC是直角三角形.………………………………………………1分
∵AP=CM,BP=PM,PA:PB:PC=1::,∴CM:PM:PC=1::.…2分
设CM=k,则PM=k,PC=k,∴CM2+PM2=PC2,
∴△PMC是直角三角形,∠PMC=900.………………………………1分
四、自选题(本小题5分)
(1),1,………………………………………………1分
(2)………………………………………………………………1分
(3)∵l=a+b+c,m=a+b-c,
∴lm=(a+b+c)(a+b-c)
=(a
+b)2-c2
=a2+2ab+b2-c2.
∵∠C=90°,∴a2+b2=c2,s=1/2ab,
∴lm=4s.
即……………………………………………………3分
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。中国学科吧(jsfw8.com)编辑了初二数学下册期末试题(含答案),整理提供。