xxxx初三下数学试题
初三下数学试题一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)
1、零上13℃记作+13℃,零下2℃可记作()
A.2B.-2C.2℃D.-2℃
2、如图,这个几何体的主视图是()
3、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是()
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形
4、把不等式组的解集表示在数轴上,正确的是()
5、在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款。其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万。这组数据的众数和中位数分别是()
A.20万、15万B.10万、20万C.10万、15万D.20万、10万
6、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()
A.AB=CDB.AD=BCC.AB=BCD.AC=BD
7、方程的解是()
A.B.
C.D.
8、如图,直线AB对应的函数表达式是()
A.B.
C.D.
9、如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,
且∠EDC=30°,弦EF∥AB,则EF的长度为()
A.2B.C.D.
10、已知二次函数(其中a>0,b>0,c<0),
关于这个二次函数的图象有如下说法:
①图象的开口一定向上;②图象的顶点一定在第四象限;
③图象与x轴的交点至少有一个在y轴的右侧。
以上说法正确的个数为()
A.0B.1C.2D.3
第II卷(非选择题共90分)
二、填空题(共6小题,每小题3分,计18分)
11、若∠α=43°,则∠α的余角的大小是&nbs
p;。
12、计算:·=。
13、一个反比例函数的图象经过点P(-1,5),则这个函数
的表达式是。
14、如图,菱形ABCD的边长为2,∠ABC=45°,则点D
的坐标为。
15、搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管。
16、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°
且DC=2AB,分别以DA、AB、BC为边向梯形外作
正方形,其面积分别为、、,则、、之间
的关系是。
三、解答题(共9小题,计72分。解答应写出过程)
17、(本题满分6分)
先化简,再求值:
,其中a=-2,b=
18、(本题满分6分)
已知:如图,B、C、E三点在同一条直线上,AC∥DE,
AC=CE,∠ACD=∠B
求证:△ABC≌△CDE
19、(本题满分7分)
下面图①、图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图:
根据上图信息,解答下列问题:
(1)求本次被调查学生的人数,并补全条形统计图;
(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?
(3)通过对以上数据的分析,你有何感想?(用一句话回答)
20、(本题满分7分)
阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜。请你在他们提供的测量工具中选出所需工具,设计一种测量方案。
(1)所需的测量工具是:;
(2)请在下图中画出测量示意图;
(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.
21、(本题满分8分)
如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏。
(1)随机翻一个杯子,求翻到黄色杯子的概率;
(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率。
22、(本题满分8分)
生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗
xxxx棵。种植A、B两种树苗的相关信息如下表:
设购买A种树苗x棵,造这片林的总费用为y元。解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?
23、(本题满分8分)
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。
(1)求证:AC=AE;
(2)求△ACD外接圆的半径。
24、(本题满分10分)
如图,矩形ABCD的长、宽分别为和1,且OB=1,点E(,2),连接AE、ED。
(1)求经过A、E、D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′、E′、D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由。
25、(本题满分12分)
某县社会主义新农村建设办公室,为
了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。
如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处。
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。
综上,你认为把供水站建在何处,所需铺设的管道最短?
相关推荐
九年级数学下学期第一次月考卷
九年级数学试题上学期期末试题(带答案)