高三数学抛物线说课稿范文
一、内容简析:
1、知识梳理
定义
到定点的距离与到定直线的距离相等的点的轨迹
方程
1.y2=2px(p≠0),焦点是F(,0)
2.x2=2py(p≠0),焦点是F(0,)
性质
以曲线C:y2=2px(p>0)为例
1.范围:x≥0
2.对称性:关于x轴对称
3.顶点:原点O
4.离心率:e=1
5.准线:x=-
6.焦半径P(x,y)∈S,|PF|=x+
2、重点、难点:
本节重点是抛物线的定义、四种方程及几何性质。难点是四种方程的运用及对应性质的比较、辨别和应用,关键是定义的运用。
建议在教学中注意以下几点:
1)圆锥曲线统一定义:平面内与一定点F和定直线l的距离之比为常数e的点的轨迹,当0
2)由于抛物线的离心率e=1,所以与椭圆及双曲线相比,它有许多特殊的性质,而且许多性质是可以借助于平面几何的知识来解决的;
3)抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离.牢记它对解题非常有益;
4)求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线标准方程;
5)在解题中,抛物线上的点、焦点、准线三者通常与抛物线的定义相联系,所以要注意相互转化;
6)在定义中,点F不在直线L上,否则轨迹不是抛物线。
二、教学目标:
1、掌握抛物线的定义、标准方程和简单几何性质;
高三数学抛物线说课稿2、学会利用定义与简单的几何性质解决与抛物线有关的问题。
3、在教学中渗透辩证、全面看待事物的思想与方法。
三、点击双基
1.(xxxx年春季北京)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为
A.B.1C.2D.4
答案:C
2.设a≠0,a∈R,则抛物线y=4ax2的焦点坐标为
A.(a,0)B.(0,a)
C.(0,)D.随a符号而定
答案:C
3.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系为>A.相交B.相离
C.相切D.不确定.
答案:C
4.以椭圆+=1的中心为顶点,以椭圆的左准线为准线的抛物线与椭圆右准线交于A、B两点,则|AB|的值为___________.
答案:
5.(xxxx年全国)对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;②焦点在x轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
能使这抛物线方程为y2=10x的条件是____________.(要求填写合适条件的序号)
答案:②⑤
四、典型例题:
【例1】求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
剖析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p;从实际分析,一般需确定p和确定开口方向两个条件,否则,应展开相应的讨论.
解:(1)设所求的抛物线方程为y2=-2px或x2=2py(p>0),
∵过点(-3,2),
∴4=-2p(-3)或9=2p·2.
∴p=或p=.
∴所求的抛物线方程为y2=-x或x2=y,前者的准线方程是x=,后者的准线方程是y=-.
(2)令x=0得y=-2,令y=0得x=4,
∴抛物线的焦点为(4,0)或(0,-2).
当焦点为(4,0)时,=4,
∴p=8,此时抛物线方程y2=16x;
焦点为(0,-2)时,=2,
∴p=4,此时抛物线方程为x2=-8y.
∴所求的抛物线的方程为y2=16x或x2=-8y,对应的准线方程分别是x=-4,y=2.
评述:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.
【例2】如下图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.
剖析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x、y的取值范围.
六、思悟小结
本节主要内容是抛物线的定义、方程及几何性质.解决本节问题时应注意以下几点:
1.求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.
2.凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算.
3.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.
拓展题例
【例题】(xxxx年北京东城区模拟题)已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为,过抛物线C1的焦点F作倾斜角为的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.
七、板书设计(略)
同类热门:
高三数学说课稿之抛物线焦点性质的探索
高三数学说课稿之《函数单调性》