好好学习,天天向上,一流范文网欢迎您!
当前位置:首页 >> 计划 >> 教学计划 内容页

2019北师大版小学六年级数学下期末复习计划试题试卷资料

一、指导思想
1、落实双基:把学生小学阶段所学的分散的数学知识加以系统化整理,勾通知识间的联系,形成知识网落,针对学生的实际查漏补缺,弥补知识的缺陷。
2、培养能力:以《课标》精神为指导,把握教材特点,复习时要加强综合性,实践性,体现现实的、生活的、有意义的数学学习,体现学生的自主学习、探究学习、合作学习,通过复习提高学生的思维能力,发展学生的情感态度与价值观,培养学生的创新精神和实践能力。3、加强评价:复习时要注意反思与评价。通过反思(学习过程与教学过程的反思)查找不足,弥补缺漏。通过评价(特别是形成性评价)促进学生学习的自主性、主动性和发展性。
二、复习范围
以十二册教材第三单元涉及的复习内容为主。本单元内容不仅是本册教材的一个重点,它也是全套教材的一个重要组成部分。
本单元教材把全部小学数学内容划分为四部分。1、数与代数;2、空间与图形;3、统计与概率;4、解决问题的策略。
这四部分内容,按照知识间的联系,加以编排,使所学的数学基础知识、基本技能比较完整和系统化。复习时需要教师根据本班学生的实际情况,认真制定复习计划
三、复习的要点及要求
(一)、数与代数
 1、数的认识
(1)数的意义;(2)数的读法和写法;(3)数的改写;(4)数的大小比较;(5)数的整除;(6)分数、小数的基本性质;(7)常见的量;
这部分内容的重点是概念的识记和理解,难点是概念的辨析和运用。概念要在具体问题情境中识别记忆,不能要求学生死记硬背,要建立知识间的内在联系,通过实际问题的辨析、对比、强化对知识的理解和运用。
(1)数的意义包含的知识点①自然数、整数;②分数;③百分数;④小数;⑤循环小数。
 要求:理解并掌握这些概念,掌握自然数、分数、百分数、小数的计数单位,准确说出每个数包含的计数单位的个数,会进行数的分解与组成。认识这些数之间的关系。
(2)、数的读法和写法:
①整数读写法;②小数读写法;③分数读写法。
复习的重点是:整数的多位数读写。其中中间、末尾有零的数的读写是难点。要求:①正确读写整数、小数、分数。 ②由于较大数目的读写比较抽象、枯燥,复习时要借助"分级线"加强指导,另外要创设现实的问题情境,增强趣味性。如:提供现实生活的报道数据,感受多位数与现实的联系,调动学习学习的热情,体验大数目的实际意义,增强学习和应用意识。
(3)数的改写:
①把一个较大的多位数改写成以"万"或"亿"作单位的数。
②求小数的近似数
③省略"万"或"亿"后面的尾数。
④假分数与整数、带分数的互相改写。
⑤分数、小数、百分数的互化(不包括循环小数化为分数)。
复习的难点是:"改写"与"省略"之间的区别
要求:①复习时侧重对比训练。如:把xxxx8000改写成以万为单位的数是(),省略万后面的尾数是()。在对比训练中体验它们的联系与区别。②改写、互化时注意互化方法灵活性的训练
(4)、数的大小比较:
①整数大小比较;②小数大小比较;③分数大小比较;④百分大小比较;⑤整数、小数、百分数之间的比较。
复习难点:分数大小的比较。
要求:①掌握比较方法,会比较数的大小;
②给学生一定的时间与空间,让他们自己去探索每一类数的比较方法之间的联系、区别,培养学生自主学习的能力。
③拓展学生思维,培养个性化学习。通过复习,学生应该达到运用抽象的数进行比较的水平,但由于学生学习能力、水平不同,在比较数的大小中允许学生采取不同的比较方法。
④注重比较形式的多样化,让学生进一步认识数值的实际意义。如:在0.4与0.5之间插入一个两位小数;写出一个比1/4小的分数------
⑤整数、小数、分数、百分数之间的比较是一个难点,复习时教师应根据学生的特点,教师自身的特点采取适应的方法进行指导或学生之间相互交流自己的科学的比较方法。
(5)、数的整除:
①、整除、约数、倍数、质数、合数、质因数、分解质因数、互质数、最大公约数、最小公倍数。
②、能被2、5、3整除的数的特征。
③、分解质因数。
④、求最大公约数和最小公倍数的方法。
数的整除这部分内容概念非常多,又很抽象,应该着重弄清它们之间的联系与区别。
要求:①以理解概念,正确应用概念为主要目的。
由于这部分概念抽象,学生复习时会有一定难度,为了降低学生的难度,不要求学生死记硬背概念,能在具体的问题情境中做出准确判断即可。如:10÷2=5--(整除)7÷2=3.5--(除尽)
②掌握20以内的整数的特点(质数、合数、奇数、偶数、最大的、最小的)。
③加强概念辨析,深入理解掌握概念。
在概念辨析中应加强学生的自主活动,让他们在探索中理解每个概念的真正含义。
④注重问题的开放性,建立知识之间的联系,达到"举一反三"的目的。体现不同的学生学习的不同特点。如:针对7、14、21、25、49这些数,围绕数的整除知识你能提出什么样的数学问题?36□如果在方框内填一个数字,关于数的整除知识你可能提出什么样的问题?
⑤关于最大公约数、最小公倍的问题,要加强实际应用训练。
(6)、分数、小数的基本性质
分数小数的基本性质是分数、小数计算的基础。通过复习使学生巩固分数、小数的基本性质,并且建立起它们之间的联系。
复习时侧重的知识点:
①小数点位置的移动引起小数大小的变化;②约分、通分。
小数点位置移动是一个难点,复习时可根据本班学生实际情况有针对性地进行指导。
(7)常见的量
复习要点:
(1)常用的长度、面积、体积单位
(2)常用的质量单位
(3)时间单位
(4)名数改写
复习的难点:建立各个单位的空间观念,理解他们之间的联系。
要求:(1)记住计量单位比较简单,但要建立计量单位的概念却是一个难点,复习时教师要注意学生独立学习与自主学习能力的发挥,尽可能让学生联系自己生活中的一些具体实物或教具,比一比、说一说、计量单位的大小。教师还可以把教材中的表格设计成报告单,让学生以独立或合作的形式进行研究探讨,填写报告单,进行交流,加深理解这些计量单位之间的联系与区别,巩固强化学生们已建立起来的这些单位的空间观念,达到能准确应用这些单位的目的。(2)掌握计量单位名数的改写方法,进行正确的化聚。
2.数的运算
计算知识包括四则运算意义、法则、运算定律与简便算法、四则混合运算,估算。
这三小节是把整数、小数、分数、四则运算放在一起进行整理和复习。分数、小数的四则运算是在整数四则运算的基础上扩展来的。它们既有联系又有区别。为了让学生更好地掌握这些运算的意义,应整理成表格,使学生很清楚地看出它们的联系与区别。
教学建议:①复习时表格应让学生完成,教师可给学生提供表格、思考的问题,让学生去解决问题,在解决问题中通过合作的方式,完成这张表格,让学生经历这个过程,对于他们认识、了解四则运算的意义及联系是非常重要的,同时可培养他的分析、概括、总结能力,培养他们合作学习的意识。
②四则运算的法则的复习方法同四则运算的意义的复习方法是相同的,可以让学生通过计算回忆法则,体会整数、小数、分数加减法的相同点和不同点,乘除法的相同点与不同点。不需要用语言准确概括出来。混合运算不超过三步,参加运算的数不宜过大,按照《课标》要求降低计算的难度,但要加强计算的准确度,计算方法的灵活度的训练。复习四则混合运算的重点:一是运算顺序、计算方法;二是学习习惯的养成,复习时严格要求学生作到下面四点:一看有无抄错数;二看顺序是否正确;三看计算结果是否合理;四看算法是否最优化。
  ③关于加减法、乘除法各部分之间的关系的等量关系式,要求学生熟练掌握,它是解方程的基础。
④运算定律与简便算法,复习时要把定律应用到整数、小数、分数的运算中。除了应用定律进行比较典型的简算外,还应进行一些简算的基本技巧性的训练。
⑤估算
教学建议:六年级学生的思维正逐步向抽象思维过度,但他们仍需要借助形象去感受。所以复习时注意把这些数的概念放到现实有趣的具体情境中,在学生熟悉的生活中让他们去解决问题、参与活动,唤起学生对这些数的概念的回忆,使学生进一步感受数的意义,建立起数与数之间的联系。复习时要避免单纯就知识讲知识,更不要让学生死记硬背概念。要通过实践活动让学生感受、探索、理解、建立知识间的联系。如复习小数、分数、百分数之间的关系,我们可以给学生一个研究探索时间空间,让他们去发现其中的规律。本单元复习的侧重点也应该放在学生计算能力的提高上,因为计算贯穿于试卷的始终,计算能力的高低决定着学生学习质量。计算能力是在理解的基础上应用计算知识的能力,是知识技能、思维水平、习惯态度的综合表现。我们应注意从三个方面提高学生的计算能力。
(1).整理计算知识。
(2).进一步明确口算、笔算、估算的基本要求,并加强练习。。
(3).灵活选用计算方式,恰当应用计算知识,尽量使计算简便。
(4)、强化学生良好做题习惯的养成
3、代数初步知识
 复习要点:
(1)、用字母表示数:表示学过的计算公式;表示基本数量关系。
(2)、简易方程:①方程概念;②解方程  
(3)、①比的意义与性质;②求比值化简比;③比例尺。
要求:,通过具体题目让学生进行分析、判断、解答,有针对性地进行复习。
在这部分知识复习时,注意下列知识的区别:
①a的平方与2a;②X-2=3、3-X=2;③比与除法、分数;④求比值与化简比;⑤正比例与反比例。
② 由于这部分知识易混的概念较多,建议采用对比方法进行复习较好。不要进行纯理性概念上的对比,要通过解决具体的问题来体验、感悟它们的联系与区别,掌握解决问题的方法。如:求比值:4:2/5=10-----是一个商,可以是整数、小数、也可以是分数。
③化简比:4:2/5=10:1---是一个比,前项和后项都是整数。
(二)、空间与图形
这部分知识是把小学数学中学过的几何图形集中整理复习。复习的知识点:(1)图形的认识;(2)平面图形;(3)立体图形;(4)图形与测量(5)图形与变换(6)图形与位置
《图形的认识》复习要点及要求:
1系统整理学过的图形,沟通图形之间的联系,形成知识网络。
2.从不同的角度研究立体图形,沟通立体图形与平面图形之间的联系,发展学生的空间观念。
我们可以先让学生罗列已经学过的图形;然后引导学生把这些图形进行归类,梳理出知识内容之间的联系,并通过网络图等形式呈现知识之间的联系;。在分类的过程中应注意两点:一是将图形与其名称结合起来。在整理时鼓励学生根据图形的名称画出来(立体图形在教师的指导下画出简图),二是通过分类,再次深化学生对图形之间联系的认识。教学时教师要引导学生从不同的角度去研究各种立体图形,沟通立体图形与平面图形之间的联系。教学时应注意让学生适当的动手操作,以实现对所学内容的认识上的提升,积累数学活动的经验。
《平面图形》主要是引导学生复习长方形、正方形、三角形、平行四边形、梯形、圆等平面图形的认识及其特征。教学这部分内容时教师要明确教学目标,引导学生按照一定的程序教学这部分内容时教师要明确教学目标,引导学生按照一定的程序进行梳理。如从边的角度进行梳理,特殊的四边形有梯形和平行四边形,平行四边形中包括长方形,长方形包括正方形只有一组对边平行的四边形是梯形,两组对边分别平行的四边形是平行四边形,长方形的对边平行且相等,正方形的对边平行并且四条边都相等;从角的角度梳理,长方形和正方形的四个角都是直角,四个角都相等;再如从轴对称图形的角度来梳理,这些图形中,长方形、正方形、等腰三角形、等边三角形、等腰梯形和圆都是轴对称图形,等边三角形和等腰梯形只有一条对称轴,长方形、等边三角形、正方形分别有2、3、4条对称轴,圆有无数条对称轴等。再整理时鼓励学生将知识用合适的形式表示出来。
《立体图形》主要是引导学生复习长方体、正方体、圆柱、圆锥等立体图形的认识及其特征,复习观察物体的有关知识。分两部分,一部分让学生分别说出已学过的立体图形的特点,并尝试验证这些特点。来引导学生复习立体图形的特征,再用一定的方式验证这些特征。长方体和正方体的特征主要从点、面、棱等方面进行复习。圆柱、圆锥的特征主要从面的角度去复习,还可以从展开图的角度引导学生进行复习。另一部分是找出一个立体图形从正面、上面、左面看到的形状并连一连。来引导学生复习观察物体的有关知识,进一步体会“从不同的方向观察物体看到的形状可能是不同的”,发展学生的空间观念。《图形与测量》复习要点:
1.对图形测量的有关知识进行系统整理,进一步理解周长、面积、体积、等以及相应的单位。
2.沟通几种基本图形面积公式及其推导过程的内在联系、体积计算公式之间的联系,体会数学知识和方法的内在联系,体会转化、类比等数学思想方法,发展初步的推理能力。
3.正确计算常见平面图形的周长和面积、常见立体图形的表面积和体积,并解决一些简单的实际问题。
《图形与测量》复习的主要内容时长度、面积、和体积的认识,度量单位的认识及进率,平面图形的周长和面积,立体图形的表面积和体积等,围绕这些知识,教材在“回顾与交流”中给出了9个提示性的问题,引导学生对知识进行回顾与整理。教学时可以根据复习内容和班级实际分成几个课时进行复习。
教材的主题情境图是引导学生结合情境图中的物体说说对长度、面积、体积、(容积)的认识。如结合围栏的长度说说对长度、周长的认识结合水池的占地大小、草坪的大小等说说对面积的认识;结合柱子的大小、水池中水的多少说说对体积容积的认识,教学时还可以让学生举一些生活中的实例加深对这些内容的认识。
图形与变换
复习要点:
1图形的平移、旋转与轴对称。
2.能确定轴对称图形的对称轴,能在方格纸上画出一个图形的轴对称图形,能将简单图形平移或旋转90°。
3.整理已学过的平面图形的轴对称性,加深对这些图形的认识。
4.灵活运用平移、旋转和轴对称在方格纸上设计图案。这部分内容主要包括轴对称、平移和旋转这部分内容尽管是复习,但教学时仍应重视学生的观察和动手操作。另一方面要把握好具体内容的“度”,运用平移、旋转和轴对称,作图需要借助方格纸,旋转的角度只限于90°,平移是在水平方向和竖直方向。可以借助具体图形的变换,引导讨论三种变换的要素。对于平移来说,要指出平移的方向和距离;对于旋转来说,要指出旋转中心、方向和旋转的角度;对于轴对称来说,要指出对称轴。
图形与位置
复习要点:
1.复习有关确定位置的知识。
2.能在具体情境中,确定某一地点的位置。
教材安排了确定大本营位置的情境,目的在于通过这个问题的解决,鼓励学生回顾确定位置的方法。要确定平面上一个物体的位置,可以用类似“第几排第几列”的方法表示位置,也可以根据方向和距离确定物体的位置,前一种方法实质是以后要学习的直角坐标,后一种为极坐标。但无论哪种方法,都需要有参照点(也就是原点)和两个要素。第一种方法,可以将大鸣山作为原点,水平、竖直方向组成直角坐标系。如果设大鸣山为(0,0),大本营的位置可以表示为(4,3),也就是大鸣山向东400米,再向北300米。第二种方法,可以将大鸣山作为参照点(原点),正东方向和正北方向组成坐标系,这样可以用东偏北37°,离大鸣山500米表示大本营的位置。当然,学生也可以自己设定原点以确定位置。这个情境需要学生自己建立坐标系以确定位置,有一定的难度,教师应给与适当指导。
(三)、统计与概率
复习要点及要求:
(1)平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。
(2)统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。
建议:复习时忌机械练习,单调地填表、制统计图,应结合学生的实际生活设计一些实践活动,在活动中,让学生应用统计知识,既达到了巩固知识的目的,又调动了学生的积极性,主动性,发挥了学生的实践能力与创新能力。
如:从学生的学习生活出发,针对商场购物优惠方式多种多样的特点,让学生自己设计购物方案,选择最佳购物方案,在这个过程中完成统计知识的复习任务。(四)、解决问题策略
复习要点:
1、梳理在以前学习过程中用到的解决问题的策略,如画图、列表、猜想与尝试、从特例开始寻找规律。
2、能积极尝试从数学的角度运用所学知识和方法寻求解决问题的策略,体会解决问题策略的多样性。
复习解决实际问题,要整理解决问题的策略,用策略统领解题活动。二、三年级解答两步计算的实际问题,初步形成解题思路,已经是在教学策略。四~六年级每一册教材都集中安排“解决问题的策略”单元,每个单元重点教学一种策略。
整理解决问题的策略,要有层次地进行。首先是解决问题的一般步骤,大致是“理解题意

TAG标签: