好好学习,天天向上,一流范文网欢迎您!
当前位置:首页 >> 计划 >> 教学计划 内容页

新课标人教版五年级数学下复习计划

一、复习目标:
1.通过整理和复习,使学生会掌握分数加减法运算的方法,并能正确的进行计算。
2.通过整理和复习,使学生掌握正方体、长方体的表面积和体积的计算方法,灵活运用知识解决生活中的实际问题。
3.通过整理和复习,使学生能在方格纸上根据给出的轴对称图形的一半画出另一半;能在方格纸上将简单图形旋转。
4.通过整理和复习,使学生知道复式折线统计图的作用,会用折线统计图来表示数据。能根据需要选择条形统计图或折线统计图表示数据;能根据统计结果作出简单的分析和判断。
5.通过整理和复习,使学生经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。
二、复习策略:
1.按书本设计基本程序,适当调整,由前到后;从简单到复杂循序渐进展开有条不紊的系统梳理;在系统梳理的基础上进行针对复习,主要针对第一步复习发现或存在的问题进行强化、纠正、补救等方面的复习工作。
2.要重视查漏补缺。要根据所教班级的情况,确定班级的复习计划,对相对比较薄弱的内容要加强复习和练习。
3.要注意区别对待不同的学生。对不同的学生要有不同的要求。在复习题的设计中要十分注意层次性
4.要重视学生积极主动的参与到复习过程中去。可采用的一些形式:学生自己出题目练习,学生自己去整理知识;学生与学生之间去交流与合作。
5.综合复习、分层练习,做到在练中复;在复中练,纵横交错混杂进行。
三、复习知识要点注意点
第一单元图形的变换
(一)对称
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、学过的轴对称平面图形:长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……
3、圆有无数条对称轴。
(二)旋转
1、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
2、生活中的旋转:电风扇、车轮、纸风车
3、长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。
4、旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。
(三)对称和旋转的画法
1、对称要注意:对应点到对称轴的距离相等,对应点之间的连线垂直于对称轴。
2、旋转要注意:顺时针、逆时针、度数。
第二单元因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的倍数,小数是大数的因数。如:12和6,
12是6的倍数,6是12的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
2、自然数按能不能被2整除来分:奇数偶数
奇数:不能被2整除的数
偶数:能被2整除的数。
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,没有最大的质数和合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19),它们的和是77。
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
第三单元长方体和正方体
【概念】          
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
在长方体和正方体中,相对的棱互相平行,相交的棱互相垂直。
长方体的棱长总和=(长+宽+高)×4L=(a+b+h)×4
长=棱长总和÷4-宽-高a=L÷4-b-h
宽=棱长总和÷4-长-高b=L÷4-a-h
高=棱长总和÷4-长-宽h=L÷4-a-b
正方体的棱长总和=棱长×12L=a×12
正方体的棱长=棱长总和÷12a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-abS=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)
正方体的表面积=棱长×棱长×6S=a×a×6
6、物体所占空间的大小叫做物体的体积。
棱长是1厘米的正方体,体积是1立方厘米。
棱长是1分米的正方体,体积是1立方分米。
棱长是1米的正方体,体积是1立方米。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h=V÷a÷b
正方体的体积=棱长×棱长×棱长V=a×a×aV=a3
a3读作“a的立方”表示3个a相乘,(即a

TAG标签: