以下是中国学科吧(jsfw8.com)为您推荐的2015年中考数学图形的变换专题试题解析,希望本篇文章对您学习有所帮助。
2015年中考数学图形的变换专题试题解析
一、选择题
1.(2019湖北武汉3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A
恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】
A.7B.8C.9D.10
【答案】C。
【考点】折叠的性质,矩形的性质,勾股定理。
【分析】根据折叠的性质,EF=AE=5;根据矩形的性质,∠B=900。
在Rt△BEF中,∠B=900,EF=5,BF=3,∴根据勾股定理,得。
∴CD=AB=AE+BE=5+4=9。故选C。
2.(2019湖北武汉3分)如图,是由4个相同小正方体组合而成的几何体,它的左视图是【】
【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左面看易得只有一排,两层都是1个正方形,。故选D。
3.(2019湖北黄石3分)如图所示,该几何体的主视图应为【】
【答案】C。
【考点】简单组合体的三视图。
【分析】几何体的主视图就是从正面看所得到的图形,从正面看可得到一个大矩形左上边去掉一个小矩形的图形。故选C。
4.(2019湖北黄石3分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得
点C与点A重合,则AF长为【】
A.B.C.D.
【答案】B。
【考点】翻折变换(折叠问题),折叠对称的性质,矩形的性质,勾股定理。
【分析】设AF=xcm,则DF=(8-x)cm,
∵矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,即x2=62+(8-x)2,解得:x=。故选B。
5.(2019湖北荆门3分)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2019个图形中直角三角形的个数有【】
A.8048个B.4024个C.2019个D.1066个
【答案】B。
【考点】分类归纳(图形的变化类)。
【分析】写出前几个图形中的直角三角形的个数,并找出规律:
第1个图形,有4个直角三角形,第2个图形,有4个直角三角形,
第3个图形,有8个直角三角形,第4个图形,有8个直角三角形,
…,
依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个,
所以,第2019个图形中直角三角形的个数是2×2019=4024。故选B。
6.(2019湖北天门、仙桃、潜江、江汉油田3分)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是【】
A.B.C.D.
【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环。故选C。
7.(2019湖北宜昌3分)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是【】
A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆
【答案】C。
【考点】简单组合体的三视图。1419956
【分析】找到从上面看所得到的图形即可:从上面可看到两个外切的圆。故选C。
8.(2019湖北恩施3分)一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是【】
A.B.C.D.
【答案】B。
【考点】简单组合体的三视图。
【分析】从上面看该组合体的俯视图是一个矩形,并且被一条棱隔开,故选B。
9.(2019湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型
摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形
状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.
A.B.C.D.
【答案】A。
【考点】由三视图判断几何体。
【分析】一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,即要这个几何体的三
视图分别是正方形、圆和正三角形。符合此条件的只有选项A:主视图是正方形,左视图是正三角形,俯
视图是圆。故选A。
10.(2019湖北黄冈3分)如图,水平放置的圆柱体的三视图是【】
A.B.
C.D.
【答案】A。
【考点】简单几何体的三视图。
【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案:
依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆。故选A。
11.(2019湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以
每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将
△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【】
A.B.2C.D.4
【答案】B。
【考点】动点问题,等腰直角三角形的性质,翻折对称的性质,菱形的性质,矩形。
【分析】如图,过点P作PD⊥AC于点D,连接PP′。
由题意知,点P、P′关于BC对称,∴BC垂直平分PP′。
∴QP=QP′,PE=P′E。
∴根据菱形的性质,若四边形QPCP′是菱形则CE=QE。
∵∠C=90°,AC=BC,∴∠A=450。
∵AP=t,∴PD=t。
易得,四边形PDCE是矩形,∴CE=PD=t,即CE=QE=t。
又BQ=t,BC=6,∴3t=6,即t=2。
∴若四边形QPCP′为菱形,则t的值为2。故选B。
12.(2019湖北随州4分)下列四个几何体中,主视图与左视图相同的几何体有【】
A.1个B.2个C.3个D.4个
【答案】D。
【考点】简单几何体的三视图。
【分析】分别分析四种几何体的三种视图即可得出结论:
①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;
③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆。
故主视图与左视图相同的几何体有。故选D。
13.(2019湖北十堰3分)如图是某体育馆内的颁奖台,其主视图是【】
A.B.C.D.
【答案】A。
【考点】简单组合体的
三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。从颁奖台正面看所
得到的图形为A。故选A。
14.(2019湖北十堰3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④;⑤.其中正确的结论是【】
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
【答案】A。
【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。
【分析】∵正△ABC,∴AB=CB,∠ABC=600。
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。
∴∠O′BA=600-∠ABO=∠OBA。∴△BO′A≌△BOC。
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到。故结论①正确。
连接OO′,
∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。
∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,
∴△AOO′是直角三角形。
∴∠AOB=∠AOO′+∠O′OB=900+600=150°。故结论③正确。
。故结论④错误。
如图所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,
点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的
直角三角形。
则。
故结论⑤正确。
综上所述,正确的结论为:①②③⑤。故选A。
15.(2019湖北孝感3分)几个棱长为1的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是【】
A.4B.5C.6D.7
【答案】B。
【考点】由三视图判断几何体。
【分析】综合三视图可知,这个几何体共有两行三列,它的下层应该有3+1=4个小正方体,上层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个。所以这个几何体的体积是5。故选B。
16.(2019湖北襄阳3分)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是【】
A.B.C.D.
【答案】B。
【考点】简单组合体的三视图。1028458
【分析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形。故选B。
17.(2019湖北鄂州3分)如左下图是一个由多个正方体堆积而成的几何体俯视图。图中所示数字为该小
正方体的个数,则这个几何体的左视图是【】
【答案】D。
【考点】由三视图判断几何体,简单组合体的三视图。
【分析】由俯视图和图中所示小正方体的个数的数字,知此几何体有2行3列3层,前排有2层,后排有3层,故个几何体的左视图是D。故选D。
二、填空题
1.(2019湖北荆州3分)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为 ▲
【答案】8。
【考点】翻折变换(折叠问题),折叠的对称性质,正方形的性质,勾股定理。
【分析】如图,∵正方形ABCD的对角线长为2,即BD=2,∠A=90°,AB=AD,∠ABD=45°,
∴AB=BD•cos∠ABD=BD•cos45°=2。
∴AB=BC=CD=AD=2。
由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,
∴图中阴影部分的周长为
A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8。
2.(2019湖北荆州3分)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm2.(结果可保留根号)
【答案】+360。
【考点】由三视图判断几何体,解直角三角形。
【分析】根据该几何体的三视图知道其是一个六棱柱,
∵其高为12cm,底面半径为5cm,∴其侧面积为6×5×12=360cm2。
又∵密封纸盒的底面面积为:cm2,
∴其全面积为:(+360)cm2。
3.(2019湖北鄂州3分)在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是▲。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE=BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。
在△AME与△AMN中,∵BE=BN,∠EBM=∠NBM,BM=BM,
∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。
又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。
∵BC=,∠ABC=45°,∴CE的最小值为sin450=4。
∴CM+MN的最小值是4。
三、解答题
1.(2019湖北荆门9分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
【答案】解:(1)画图,如图:
(2)证明:由题意得:△ABC≌△AED。
∴AB=AE,∠ABC=∠E。
在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,
∴△AFB≌△AGE(ASA)。
【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。
【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。
(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE。
2.(2019湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时
,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
【答案】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE。
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE。
∵AB=AC,∴∠B=∠C。∴△BDF∽△CED。∴。
∵BD=CD,∴,即。
又∵∠C=∠EDF,∴△CED∽△DEF。∴△BDF∽△CED∽△DEF。
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6。
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8。
∴S△ABC=•BC•AD=×12×8=48,
S△DEF=S△ABC=×48=12。
又∵•AD•BD=•AB•DH,∴。
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG=。
∵S△DEF=•EF•DG=•EF•=12,∴EF=5。
3.(2019湖北恩施8分)如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,
再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.
【答案】证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1。
∴。
又B′E=BE=1,∴AB′=AE﹣B′E=﹣1。
又∵AB″=AB′,∴AB″=﹣1。
∴。∴点B″是线段AB的黄金分割点。
【考点】翻折(折叠)问题,正方形的性质,勾股定理,折叠对称的性质,黄金分割。
【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AB″的长,二者相比即可得到黄金比。
4.(2019湖北襄阳12分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【答案】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。
由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。
由勾股定理易得EO=6。∴AE=10﹣6=4。
设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。
∴AD=3。
∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),
∴,解得。∴抛物线的解析式为:。
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即,解得。
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即,解得。
∴当或时,以P、Q、C为顶点的三角形与△ADE相似。
(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
【考点】二次函数综合题,折叠和动点问题,矩形的性质,全等三角形的判定和性质,勾股定理,曲线上点的坐标与方程的关系,相似三角形的判定和性质,平行四边形的判定和性质。
【分析】(1)根据折叠图形的轴对称性,△CED≌△CBD,在Rt△CEO中求出OE的长,从而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式。
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值。
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点。
由得抛物线顶点,则:M(4,)。
∵平行四边形的对角线互相平分,∴线段MN必被EC中点(4,3)平分,则N(4,﹣)。
②EC为平行四边形的边,则ECMN,
设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时N(4,﹣26)、M(12,﹣32)。
综上所述,存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
中国学科吧(jsfw8.com)
以下是中国学科吧(jsfw8.com)为您推荐的2015年中考数学图形的变换专题试题解析,希望本篇文章对您学习有所帮助。
2015年中考数学图形的变换专题试题解析
一、选择题
1.(2019湖北武汉3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A
恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】
A.7B.8C.9D.10
【答案】C。
【考点】折叠的性质,矩形的性质,勾股定理。
【分析】根据折叠的性质,EF=AE=5;根据矩形的性质,∠B=900。
在Rt△BEF中,∠B=900,EF=5,BF=3,∴根据勾股定理,得。
∴CD=AB=AE+BE=5+4=9。故选C。
2.(2019湖北武汉3分)如图,是由4个相同小正方体组合而成的几何体,它的左视图是【】
【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左面看易得只有一排,两层都是1个正方形,。故选D。
3.(2019湖北黄石3分)如图所示,该几何体的主视图应为【】
【答案】C。
【考点】简单组合体的三视图。
【分析】几何体的主视图就是从正面看所得到的图形,从正面看可得到一个大矩形左上边去掉一个小矩形的图形。故选C。
4.(2019湖北黄石3分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得
点C与点A重合,则AF长为【】
A.B.C.D.
【答案】B。
【考点】翻折变换(折叠问题),折叠对称的性质,矩形的性质,勾股定理。
【分析】设AF=xcm,则DF=(8-x)cm,
∵矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,即x2=62+(8-x)2,解得:x=。故选B。
5.(2019湖北荆门3分)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2019个图形中直角三角形的个数有【】
A.8048个B.4024个C.2019个D.1066个
【答案】B。
【考点】分类归纳(图形的变化类)。
【分析】写出前几个图形中的直角三角形的个数,并找出规律:
第1个图形,有4个直角三角形,第2个图形,有4个直角三角形,
第3个图形,有8个直角三角形,第4个图形,有8个直角三角形,
…,
依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个,
所以,第2019个图形中直角三角形的个数是2×2019=4024。故选B。
6.(2019湖北天门、仙桃、潜江、江汉油田3分)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是【】
A.B.C.D.
【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环。故选C。
7.(2019湖北宜昌3分)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是【】
A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆
【答案】C。
【考点】简单组合体的三视图。1419956
【分析】找到从上面看所得到的图形即可:从上面可看到两个外切的圆。故选C。
8.(2019湖北恩施3分)一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是【】
A.B.C.D.
【答案】B。
【考点】简单组合体的三视图。
【分析】从上面看该组合体的俯视图是一个矩形,并且被一条棱隔开,故选B。
9.(2019湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型
摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形
状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.
A.B.C.D.
【答案】A。
【考点】由三视图判断几何体。
【分析】一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,即要这个几何体的三
视图分别是正方形、圆和正三角形。符合此条件的只有选项A:主视图是正方形,左视图是正三角形,俯
视图是圆。故选A。
10.(2019湖北黄冈3分)如图,水平放置的圆柱体的三视图是【】
A.B.
C.D.
【答案】A。
【考点】简单几何体的三视图。
【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案:
依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆。故选A。
11.(2019湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以
每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将
△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【】
A.B.2C.D.4
【答案】B。
【考点】动点问题,等腰直角三角形的性质,翻折对称的性质,菱形的性质,矩形。
【分析】如图,过点P作PD⊥AC于点D,连接PP′。
由题意知,点P、P′关于BC对称,∴BC垂直平分PP′。
∴QP=QP′,PE=P′E。
∴根据菱形的性质,若四边形QPCP′是菱形则CE=QE。
∵∠C=90°,AC=BC,∴∠A=450。
∵AP=t,∴PD=t。
易得,四边形PDCE是矩形,∴CE=PD=t,即CE=QE=t。
又BQ=t,BC=6,∴3t=6,即t=2。
∴若四边形QPCP′为菱形,则t的值为2。故选B。
12.(2019湖北随州4分)下列四个几何体中,主视图与左视图相同的几何体有【】
A.1个B.2个C.3个D.4个
【答案】D。
【考点】简单几何体的三视图。
【分析】分别分析四种几何体的三种视图即可得出结论:
①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;
③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆。
故主视图与左视图相同的几
何体有。故选D。
13.(2019湖北十堰3分)如图是某体育馆内的颁奖台,其主视图是【】
A.B.C.D.
【答案】A。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。从颁奖台正面看所
得到的图形为A。故选A。
14.(2019湖北十堰3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④;⑤.其中正确的结论是【】
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
【答案】A。
【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。
【分析】∵正△ABC,∴AB=CB,∠ABC=600。
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。
∴∠O′BA=600-∠ABO=∠OBA。∴△BO′A≌△BOC。
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到。故结论①正确。
连接OO′,
∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。
∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,
∴△AOO′是直角三角形。
∴∠AOB=∠AOO′+∠O′OB=900+600=150°。故结论③正确。
。故结论④错误。
如图所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,
点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的
直角三角形。
则。
故结论⑤正确。
综上所述,正确的结论为:①②③⑤。故选A。
15.(2019湖北孝感3分)几个棱长为1的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是【】
A.4B.5C.6D.7
【答案】B。
【考点】由三视图判断几何体。
【分析】综合三视图可知,这个几何体共有两行三列,它的下层应该有3+1=4个小正方体,上层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个。所以这个几何体的体积是5。故选B。
16.(2019湖北襄阳3分)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是【】
A.B.C.D.
【答案】B。
【考点】简单组合体的三视图。1028458
【分析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形。故选B。
17.(2019湖北鄂州3分)如左下图是一个由多个正方体堆积而成的几何体俯视图。图中所示数字为该小
正方体的个数,则这个几何体的左视图是【】
【答案】D。
【考点】由三视图判断几何体,简单组合体的三视图。
【分析】由俯视图和图中所示小正方体的个数的数字,知此几何体有2行3列3层,前排有2层,后排有3层,故个几何体的左视图是D。故选D。
二、填空题
1.(2019湖北荆州3分)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为 ▲
【答案】8。
【考点】翻折变换(折叠问题),折叠的对称性质,正方形的性质,勾股定理。
【分析】如图,∵正方形ABCD的对角线长为2,即BD=2,∠A=90°,AB=AD,∠ABD=45°,
∴AB=BD•cos∠ABD=BD•cos45°=2。
∴AB=BC=CD=AD=2。
由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,
∴图中阴影部分的周长为
A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8。
2.(2019湖北荆州3分)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm2.(结果可保留根号)
【答案】+360。
【考点】由三视图判断几何体,解直角三角形。
【分析】根据该几何体的三视图知道其是一个六棱柱,
∵其高为12cm,底面半径为5cm,∴其侧面积为6×5×12=360cm2。
又∵密封纸盒的底面面积为:cm2,
∴其全面积为:(+360)cm2。
3.(2019湖北鄂州3分)在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是▲。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE=BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。
在△AME与△AMN中,∵BE=BN,∠EBM=∠NBM,BM=BM,
∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。
又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。
∵BC=,∠ABC=45°,∴CE的最小值为sin450=4。
∴CM+MN的最小值是4。
三、解答题
1.(2019湖北荆门9分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
【答案】解:(1)画图,如图:
(2)证明:由题意得:△ABC≌△AED。
∴AB=AE,∠ABC=∠E。
在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,
∴△AFB≌△AGE(ASA)。
【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。
【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。
(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△A
GE。
2.(2019湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
【答案】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE。
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE。
∵AB=AC,∴∠B=∠C。∴△BDF∽△CED。∴。
∵BD=CD,∴,即。
又∵∠C=∠EDF,∴△CED∽△DEF。∴△BDF∽△CED∽△DEF。
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6。
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8。
∴S△ABC=•BC•AD=×12×8=48,
S△DEF=S△ABC=×48=12。
又∵•AD•BD=•AB•DH,∴。
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG=。
∵S△DEF=•EF•DG=•EF•=12,∴EF=5。
3.(2019湖北恩施8分)如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,
再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.
【答案】证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1。
∴。
又B′E=BE=1,∴AB′=AE﹣B′E=﹣1。
又∵AB″=AB′,∴AB″=﹣1。
∴。∴点B″是线段AB的黄金分割点。
【考点】翻折(折叠)问题,正方形的性质,勾股定理,折叠对称的性质,黄金分割。
【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AB″的长,二者相比即可得到黄金比。
4.(2019湖北襄阳12分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【答案】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。
由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。
由勾股定理易得EO=6。∴AE=10﹣6=4。
设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。
∴AD=3。
∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),
∴,解得。∴抛物线的解析式为:。
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即,解得。
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即,解得。
∴当或时,以P、Q、C为顶点的三角形与△ADE相似。
(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
【考点】二次函数综合题,折叠和动点问题,矩形的性质,全等三角形的判定和性质,勾股定理,曲线上点的坐标与方程的关系,相似三角形的判定和性质,平行四边形的判定和性质。
【分析】(1)根据折叠图形的轴对称性,△CED≌△CBD,在Rt△CEO中求出OE的长,从而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式。
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值。
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点。
由得抛物线顶点,则:M(4,)。
∵平行四边形的对角线互相平分,∴线段MN必被EC中点(4,3)平分,则N(4,﹣)。
②EC为平行四边形的边,则ECMN,
设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时N(4,﹣26)、M(12,﹣32)。
综上所述,存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
>
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
中国学科吧(jsfw8.com)