优秀教案 说课稿 评课稿 教学反思 学科试卷

高一数学函数应用检测试题

日期:2019-05-16  类别:学科试卷  编辑:学科吧  【下载本文Word版

高一数学函数应用检测试题

数学函数应用检测试题一、选择题(本大题共10个小题,每小题5分,共50分)

1.函数f(x)=x2-3x-4的零点是(  )

A.(1,-4)         B.(4,-1)

C.1,-4D.4,-1

解析:由x2-3x-4=0,得x1=4,x2=-1.

答案:D

2.今有一组实验数据如下表所示:

t1.993.04.05.16.12

u1.54.047.51218.01

则体现这些数据关系的最佳函数模型是(  )

A.u=log2tB.u=2t-2

C.u=t2-12D.u=2t-2

解析:把t=1.99,t=3.0代入A、B、C、D验证易知,C最近似.

答案:C

3.储油30m3的油桶,每分钟流出34m3的油,则桶内剩余油量Q(m3)以流出时间t(分)为自变量的函数的定义域为(  )

A.[0,+∞)B.[0,452]

C.(-∞,40]D.[0,40]

解析:由题意知Q=30-34t,又0≤Q≤30,即0≤30-34t≤30,∴0≤t≤40.

答案:D

4.由于技术的提高,某产品的成本不断降低,若每隔3年该产品的价格降低13,现在价格为8100元的产品,则9年后价格降为(  )

A.2400元B.900元

C.300元D.3600元

解析:由题意得8100×(1-13)3=2400.

答案:A

5.函数f(x)=2x+3x的零点所在的一个区间是(  )

A.(-2,-1)B.(-1,0)

C.(0,1)D.(1,2)

解析:f(-1)=2-1+3×(-1)=12-3=-52<0,

f(0)=20+3×0=1>0.

∵y=2x,y=3x均为单调增函数,

∴f(x)在(-1,0)内有一零点.

答案:B

6.若函数y=f(x)是偶函数,其定义域为{x|x≠0},且函数f(x)在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有(  )

A.唯一一个B.两个

C.至少两个D.无法判断

解析:根据偶函数的单调性和对称性,函数f(x)在(0,+∞)上有且仅有一个零点,则在(-∞,0)上也仅有一个零点.

答案:B

7.函数f(x)=x2+2x-3,x≤0,-2+lnx,x>0的零点个数为(  )

A.0B.1

C.2D.3

解析:由f(x)=0,得x≤0,x2+2x-3=0或x>0,-2+lnx=0,

解之可得x=-3或x=e2,

故零点个数为2.

答案:C

8.某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元(不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费

(  )

A.1.00元B.0.90元

C.1.20元D.0.80元

解析:y=0.2+0.1×([x]-3),([x]是大于x的最小整数,x>0),令x=55060,故[x]=10,则y=0.9.

答案:B

9.若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是(  )

A.f(x)=4x-1B.f(x)=(x-1)2

C.f(x)=ex-1D.f(x)=ln(x-12)

解析:令g(x)=0,则4x=-2x+2.画出函数y1=4x和函数y2=-2x+2的图像如图,可知g(x)的零点在区间(0,0.5)上,选项A的零点为0.25,选项B的零点为1,选项C的零点为0,选项D的零点大于1,故排除B、C、D.

答案:A

10.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图像,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是(  )

解析:A选项中即时价格越来越小时,而平均价格在增加,故不对,而B选项中即时价格在下降,而平均价格不变化,不正确.D选项中平均价格不可能越来越高,排除D.

答案:C

二、填空题(本大题共4小题,每小题5分,共20分)

11.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.

解析:f(x)=x3-2x-5,

f(2)=-1<0,f(3)=16>0,f(2.5)=5.625>0,

∵f(2)•f(2.5)<0,

∴下一个有根区间是(2,2.5).

答案:(2,2.5)

12.已知m∈R时,函数f(x)=m(x2-1)+x-a恒有零点,则实数a的取值范围是________.

解析:(1)当m=0时,

由f(x)=x-a=0,

得x=a,此时a∈R.

(2)当m≠0时,令f(x)=0,

即mx2+x-m-a=0恒有解,

Δ1=1-4m(-m-a)≥0恒成立,

即4m2+4am+1≥0恒成立,

则Δ2=(4a)2-4×4×1≤0,

即-1≤a≤1.

所以对m∈R,函数f(x)恒有零点,有a∈[-1,1].

答案:[-1,1]

13.已知A,B两地相距150km,某人开汽车以60km/h的速度从A地到达B地,在B地停留1小时后再以

50km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是________.

解析:从A地到B地,以60km/h匀速行驶,x=60t,耗时2.5个小时,停留一小时,x不变.从B地返回A地,匀速行驶,速度为50km/h,耗时3小时,故x=150-50(t-3.5)=-50t+325.

所以x=60t,    0≤t≤2.5,150,2.5

答案:x=60t,    0≤t≤2.5150,2.5

14.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表

高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)

50及以下的部分0.568

超过50至200的部分0.598

超过200的部分0.668

低谷时间段用电价格表

低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)

50及以下的部分0.288

超过50至200的部分0.318

超过200的部分0.388

若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).

解析:高峰时段电费a=50×0.568+(200-50)×0.598=118.1(元).

低谷时段电费b=50×0.288+(100-50)×0.318=30.3(元).故该家庭本月应付的电费为a+b=148.4(元).

答案:148.4

三、解答题(本大题共4小题,共50分)

15.(12分)有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金x万元的关系可由经验公式给出:M=14x,N=34x-1(x≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,为获得最大利润,对甲、乙两种商品的资金投入分配应是多少?共能获得多大利润?

解:设投入乙种商品的资金为x万元,则投入甲种商品的资金为(8-x)万元,共获得利润

y=M+N=14(8-x)+34x-1.

令x-1=t(0≤t≤7),则x=t2+1,

∴y=14(7-t2)+34t=-14(t-32)2+3716.

故当t=32时,可获最大利润3716万元.

此时,投入乙种商品的资金为134万元,

甲种商品的资金为194万元.

16.(12分)判断方程2lnx+x-4=0在(1,e)内是否存在实数解,若存在,有几个实数解?

解:令f(x)=2lnx+x-4.

因为f(1)=2ln1+1-4=-3<0,f(e)=2lne+e-4=e-2>0,

所以f(1)•f(e)<0.

又函数f(x)在(1,e)内的图像是连续不断的曲线,

所以函数f(x)在(1,e)内存在零点,即方程f(x)=0在(1,e)内存在实数解.

由于函数f(x)=2lnx+x-4在定义域(0,+∞)上为增函数,所以函数f(x)在(1,e)内只存在唯一的一个零点.

故方程2lnx+x-4=0在(1,e)内只存在唯一的实数解.

17.(12分)某商品在近100天内,商品的单价f(t)(元)与时间t(天)的函数关系式如下:

f(t)=t4+22,     0≤t≤40,t∈Z,-t2+52,40

销售量g(t)与时间t(天)的函数关系式是

g(t)=-t3+1123(0≤t≤100,t∈Z).

求这种商品在这100天内哪一天的销售额最高?

解:依题意,该商品在近100天内日销售额F(t)与时间t(天)的函数关系式为F(t)=f(t)•g(t)

=t4+22-t3+1123, 0≤t≤40,t∈Z,-t2+52-t3+1123,40

(1)若0≤t≤40,t∈Z,则

F(t)=(t4+22)(-t3+1123)

=-112(t-12)2+25003,

当t=12时,F(t)max=25003(元).

(2)若40

F(t)=(-t2+52)(-t3+1123)

=16(t-108)2-83,

∵t=108>100,

∴F(t)在(40,100]上递减,

∴当t=41时,F(t)max=745.5.

∵25003>745.5,

∴第12天的日销售额最高.

18.(14分)某商场经营一批进价为12元/个的小商品.在4天的试销中,对此商品的单价(x)元与相应的日销量y(个)作了统计,其数据如下:

x16202428

y4230186

(1)能否找到一种函数,使它反映y关于x的函数关系?若能,写出函数解析式;

(2)设经营此商品的日销售利润为P(元),求P关于x的函数解析式,并指出当此商品的销售价每个为多少元时,才能使日销售利润P取最大值?最大值是多少?

解:(1)由已知数据作图如图,

观察x,y的关系,可大体看到y是x的一次函数,令

y=kx+b.当x=16时,y=42;x=20时,y=30.

得42=16k+b,       ①30=20k+b,②

由②-①得-12=4k,

∴k=-3,代入②得b=90.

所以y=-3x+90,显然当x=24时,y=18;

当x=28时,y=6.

对照数据,可以看到y=-3x+90即为所求解析式;

(2)利润P=(x-12)•(-3x+90)=-3x2+126x-1080=-3(x-21)2+243.

∵二次函数开口向下,

∴当x=21时,P最大为243.

即每件售价为21元时,利润最大,最大值为243元.

同类热门:

数学高一期中试卷下册最新

    以上《高一数学函数应用检测试题》范文由学科吧精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »学科吧»学科试卷»高一数学函数应用检测试题
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 学科吧 如对《高一数学函数应用检测试题》有疑问请及时反馈。All Rights Reserved