一,教材分析
1,说教材
《三角形的内角》是九年制义务教育人教版七年级下册第七章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念,边,角之间的关系的基础上,让学生动手操作,通过拼图说出"三角形的内角和等于180°"成立的理由,由浅入深,循序渐进,引导学生观察,实验,猜测,逐步培养学生的逻辑推理能力..
2,教学目标和要求
根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:
⑴了解三角形的内角
⑵会用平行线的性质与平角的定义证明三角形的内角和等于180°
⑶学会解决与求角有关的实际问题
⑷初步培养学生的说理能力
3,教学的重点与难点
重点:了解三角形的内角和性质,学会解决简单的实际问题.
难点:证明三角形的内角和等于180°.
二,说教学理念
培养学生的合作探究精神,自主学习,创新精神是新课程标准的重要理念.课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力,情感与态度,过程与方法的三统一.
三,说教法
本节课结合七年级学生的理解能力,思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化,生动化,具体化,在教学中采用启发式,师生互动式等方法,充分发挥学生的主动性,积极性,特别是用三种拼图法得出三角形内角和是180°的结论,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题,发现问题,归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识.
四,说学法
课堂中逐步设置疑问,让学生动手,动脑,动口,积极参与知识学习的全过程,渗透多观察,动脑想,大胆猜,勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展.
五,说教学过程
(一)创设情境,激发情趣
爱因斯坦说过:"问题的提出往往比解答问题更重要",上课开始,我通过一个趣味性问题,激发学生的学习热情.在一个直角三角形里住着三个内角,老二对老大说:"你凭什么度数最大,我也要和你一样大."老大说:"这是不可能的,否则我们这个家再也围不起来了…".设置悬念让学生评理说理,为三兄弟排忧解难,自然导入三角形内角和的学习.
(二)动手操作,初步感知
提问:三角形内角和是多少由于学生在小学学过这样的知识,所以很轻松地就可以答出.然后让学生分小组讨论:有什么办法可以验证得出这样的结论.学生会提出度量/拼图的方法,然后让每个学生画出一个三角形,并将它的内角剪下,试着拼拼看.通过小组合作交流有几种拼合方法.最后教师总结共有三种拼图方法.让学生从丰富的拼图活动中发展思维的灵活性,创造性,为下一环节"说理"证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待.
(三)实践说明,深入新知
教是为学服务的,教的最终目的是为了不教,教给学生学习方法,证明方法比单纯教学生证明更有效.教师设问:从刚才拼角的过程中,你能说出证明:"三角形内角和等于180°"这个结论的正确方法吗⑴把你的想法与同伴交流.⑵各小组派代表展示说理方法.⑶请同学们归纳上述各种不同的方法.教师从中挑选四种方法进行讲解.通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础.
(四)巩固练习,拓展新知
通过习题巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角,钝角,至少有几个锐角,为学生提供充分从事数学活动的时间,空间,让学生在自主探索,合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延.
(五)启发诱导,实际运用
出示例题,并提出了两个问题:1,请你结合图形解释一下题中的方位角有那几个.2,角ACB是哪个三角形的内角通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想―――数形结合思想,使学生巩固概念加深认识,初步具备解决相关问题的能力,然后让小组交流不同的解法,培养学生思维的广阔的空间.
(六)反馈矫正,注重参与
通过课堂练习,强化学生对这节课的掌握,为此我设计了两道习题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可