粉末材料粒度测定 本文关键词:粒度,测定,粉末,材料
粉末材料粒度测定 本文简介:粉末材料粒度测定是一个很复杂的问题,因为粒度的定义本身就不确定,没有那一本书能给出粒度的权威概念,这是因为对于一个球形的颗粒,我们可以用其直径来表示其大小,对一个立方体,我们可以用其棱长来表示其大小,对一个圆锥体,我们可以用其底面直径和其高两个尺寸来表示其大小,对长方体,就得用其长、宽、高三个尺寸来
粉末材料粒度测定 本文内容:
粉末材料粒度测定是一个很复杂的问题,因为粒度的定义本身就不确定,没有那一本书能给出粒度的权威概念,这是因为对于一个球形的颗粒,我们可以用其直径来表示其大小,对一个立方体,我们可以用其棱长来表示其大小,对一个圆锥体,我们可以用其底面直径和其高两个尺寸来表示其大小,对长方体,就得用其长、宽、高三个尺寸来表示其大小。对一个任意形状的颗粒就很难表征其大小。一般都采用一个与该颗粒具有某种等效效应的颗粒的直径来表示该不规则颗粒的粒径大小。ISO国际标准化组织也是以下标表示粒度划分的基准,比如下标是1表示以长度为基准(或者是为权重)来划分例,如以机械力为驱动力的筛分析,以2来表示以面积为基准来划分,比如各种沉降的方法,BET法等等,以3来表示以等效体积球或者是等效质量的球为基准来划分,ISO国际组织还有一个在几种方法之间进行转化的讨论,但是这种划分本身就是无奈之举,因为不同的划分依据本身就是混乱的,现实中的颗粒基本都是不规则的,对于一个外形不规则颗粒的描述最详尽的办法就是三维尺度的描述,但是对于一个颗粒体系来说三维尺度的描述是不可能办到的,而且颗粒外形一般都不是有规律的。
对于同一样品不同次数的取样,结果也不一样,这就造成了各种测试方法之间的结果不能彼此很好的一一对应,经常听见颗粒测试仪器厂家之间为此的彼此攻击和谩骂,甚至于同一测试方法的不同厂家之间也是如此互相攻击。所以颗粒体系的测量应该是基于统计学理论,以样本为依据,对真实情况进行逼近,目前以各种手段想得到一个粉末体系的真实粒度分布是不可能的。
纳米粉末的粒度分布的测定来说,有很多种方法。举例来说,
1结合图像分析仪的扫描电镜或者是透射电镜,
2光子相关谱法(动态激光散射法),
3X射线小角散射法(文中包括同步辐射为光源的SAXS和中子小角散射法)
4离心沉降法,X射线离心沉降法,
5比表面积法(BET),
6拉曼(Raman)散射法,
7
探针扫描显微镜,
8X射线衍射峰宽化法(谢乐公式)。
这里先要澄清一个概念,对于金属材料或者是陶瓷材料来说,颗粒度是一个比晶粒度大的概念,一般来说,一个颗粒里面可能包含几个晶粒,而一个晶粒一般要小于等于所在颗粒的尺寸。由于X射线衍射线线宽化法(谢乐公式)是晶粒度的测量,不是本文要讨论的颗粒度,所以不与详细讨论。目前只有磁流体的是一个晶粒基本就是一个颗粒,磁流体依据谢乐公式的晶粒度测量可以是说明了其颗粒度的大小的,目前未听说其它材料也是这种情况。
http://scholar.ilib.cn/A-sdjcxy200503006.html
http://www.16fw.com/view/950063.html
http://www.16fw.com/instrume
.
rumentID=0000000898
http://comm.dangdang.com/review/782180.html
2光子相关谱法(动态激光散射法)是目前最为主要的纳米材料体系粒度分析方法,主要测量微粒在液体中的扩散系数来测定颗粒尺寸。微粒在溶剂中形成分散系时,由于微粒作布朗运动导致粒子在溶剂中扩散,扩散系数与粒径满足爱因斯坦关系,由此可知,只要知道溶剂(分散介质)的黏度η,分散系的温度T,测出微粒在分散系中的扩散系数D就可求出颗粒粒径d.当激光照射到作布朗运动的粒子上时用光电倍增管测量它们的散射光,在任何给定的瞬间这些颗粒的散射光会叠加形成干涉图形,光电倍增管探测到的光强度取决于这些干涉图形.当粒子在溶剂中作混乱运动时,它们的相对位置发生变化,这就引起一个恒定变化的干涉图形和散射强度.布朗运动引起的这种强度变化出现在微秒至毫秒级的时间间隔中,粒子越大粒子位置变化越慢,强度变化(涨落)也越慢.光子相关谱的基础就是测量这些散射光涨落,根据在一定时间间隔中这种涨落可以测定粒子尺寸.由于金属陶瓷粉体在水中的分散比较困难,一些大分子蛋白在以水为液体中可以很好的分散,因此一般来说这种方法的纳米级粒度测量大分子蛋白等生物或生化研究的效果要远远优于金属或者陶瓷的粉体研究。一些纳米级的大分子蛋白还可以给出纳米级别的粒度分布。
当一束波长为λ的激光照射在一定粒度的球形小颗粒上时,会发生衍射和散射两种现象,通常当颗粒粒径大于10λ时,以衍射现象为主;当粒径小于10λ时,则以散射现象为主。一般,激光衍射式粒度仪仅对粒度在5
?m以上的样品分析较准确;而动态光散射粒度仪则对粒度在5
?m以下的纳米、亚微米颗粒样品分析准确。要求颗粒为球形、单分散,而实际上被测颗粒多为不规则形状并呈多分散性。因此,颗粒的形状、粒径分布特性对最终粒度分析结果影响较大,而且颗粒形状越不规则、粒径分布越宽,分析结果的误差就越大。激光粒度分析法具有样品用量少、自动化程度高、快速、重复性好并可在线分析等优点;缺点是这种粒度分析方法对样品有一定的要求,特别是由于分散性的原因,对非生化研究中的浓度有较大限制,一些研究不能分析高浓度体系的粒度及粒度分布,比如高浓度的水泥粉尘,分析过程中需要稀释,从而带来一定的误差。同时在利用激光粒度仪对体系进行粒度分析时,必须对被分析体系的粒度范围事先有所了解,否则分析结果将不会准确。
http://www.16fw.com/dy/zjlt/2007-11-13/200711131328364790.htm
http://www.16fw.com/Article/show/1281.html
3.这些方法中争议最大的就是SAXS方法了。
http://www.16fw.com/product_15475.html
6拉曼(Raman)散射可测量纳米晶晶粒的平均粒径,其作用与谢乐公式类似,有人曾用此方法来计算nc-Si:H膜中纳米晶的粒径.他们在nc-Si:H膜的拉曼散射谱的谱线中选取了一条晶峰,其峰位为515cm-l,在nc-Si膜
(常规材料)的相对应的晶峰峰位为521.5cm-1,取B=2.0cm-1
nm2,由上式计算出c-Si:H膜中纳米晶的平均粒径为3.5nm.
激光拉曼光谱法是以拉曼散射疚为理论基础的一种光谱分析方法。
激光拉曼光谱法的原理是拉曼散射效应。
拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。
拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。应用主要如下:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学:
拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物:
拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物:
拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
利用FT-Raman消除生物大分子荧光干扰等,有许多成功的示例。
表面和薄膜
拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多我作。
最近,对于拉曼光谱在金刚石和类金刚石薄膜的研究工作中的应用,国内外学者的兴趣有增无减。
拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。
另外,LB膜的拉曼光谱研究、二氧化硅薄膜氮化的拉曼光谱研究都已见报道。
尽管拉曼散射很弱,拉曼光谱通常不够灵敏,但利用工振或表面增强拉曼技术就可以大大加强拉曼光谱的灵敏度。表面增强拉曼光谱学(SERS)已成为拉曼光谱研究中活跃的一个领域。
传统的光栅分光拉曼光谱仪,彩的是逐点扫描,单道记录的方法,十分浪费时间。而且激光拉曼光谱仪所用的激光很容易激发出荧光来,影响测定。为避免传统激光光谱仪的弊端近来研制出了两种新型的光谱仪:
傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。
傅里叶拉曼光谱仪由激光光源、试样室、迈克尔逊干淑仪、特殊滤光器、检测器组成。
傅里叶拉曼光谱仪和光路与傅里叶红外光谱仪的光路比较相象。检测到的信号经放大器由计算机收集处理。
7扫描探针显微镜是指一类通过微小探针在样品表面扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像的显微镜。它提供了表面的三维高空间分辨的图像。扫描探针显微镜(SPM)主要包括扫描隧道显微镜(STM)和原子力显微镜(AFM)两种功能。完整的扫描探针显微镜由控制系统和显微镜系统组成。扫描隧道显微镜的工作原理是利用电子隧道现象,将样品本身作为一具电极,另一个电极是一根非常尖锐的探针。把探针移近样品,并在两者之间加上电压,当探针和样品表面相距只有数十埃时,由于隧道效应在探针与样品表面之间就会产生隧穿电流,并保持不变。若表面有微小起伏,那怕只有原子大小的起伏,也将使穿电流发生成千上万倍的变化。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。扫描隧道显微镜一般用于导体和半导体表面的测定。原子力显微镜主要包括接触模式、非接触模式和轻敲模式。一个对力非常敏感的微悬臂,其尖端有一个微小的探针,当探针轻微地接触、接近或轻敲样品表面时,由于探针尖端的原子与样品表面的原子之间产生极其微弱的相互作用力而使微悬臂弯曲,将微悬臂弯曲的形变信号转换成光电信号并进行放大,就可以得到原子之间力的微弱变化的信号。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。Multimode
NS3a具有扫描隧道显微镜模式,接触模式AFM,非接触模式AFM,轻敲模式AFM,相位成像模式AFM。
http://emuch.net/bbs/viewthread.php?tid=885624