石墨烯相变材料论 本文关键词:相变,石墨,材料
石墨烯相变材料论 本文简介:石墨烯相变材料的研究摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最
石墨烯相变材料论 本文内容:
石墨烯相变材料的研究
摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最优异的相变材料,通过将石墨烯作为填充材料,相变材料的储热能力大大提升。
关键词:
热存储
相变材料
储热材料
石墨烯
前言:
在热能的存储和利用过程中,常常存在于在供求之间在时间上和空间上不匹配的矛盾,如太阳能的间歇性,电力负荷的峰谷差,周期性工作的大功率器件的散热和工业余热利用等。相变储能材料通过材料相变时吸收或释放大量热量实现能量的储存和利用,可有效解决能量供求在时间和空间上不匹配的矛盾。因此,相变储能技术被广泛应用于具有间歇性或不稳定性的热管理领域,如航空航天大功率器件的管理,周期性间歇式电子工作器件的散热,太阳能利用,电力的“移峰填谷”,工业废热余热的回收利用,民用建筑的采暖及空调的节能领域等。近年来,相变储能技术成为能源科学和材料科学领域中一个十分活跃的前沿研究方向。
相变储能材料具有储能密度大储能释能过程近似恒温的特点。但多数相变储能材料存在热导率低,换热性能差等缺点。采用具有高导热,低密度,耐腐蚀和化学稳定性好等优点的碳材料对其进行强化传热,可有效提高系统换热效率。常用的固-液定型相变储能材料实际上是一类复合相变材料,主要是由两种成分组成:一是工作物质;二是载体基质。工作物质利用它的固-液相变进行储能工作物质可以是各种相变材料,如石蜡,硬脂酸,水合盐,无机盐和金属及其合金材料。载体基质主要是用来保证相变材料的不流动性和可加工性,并对其进行强化传热。
石墨烯是一种新型碳材料,它具有由单层碳原子紧密堆积而成的二维蜂窝状紧密堆积结构。它是构建其他维度炭质材料的基本单元。石墨烯本身具有非常高的导热系数,并兼具密度小,膨胀系数低和耐腐蚀等优点有望成为一种理想型散热材料。将石墨烯作为强化传热载体,有可能克服单一相变材料热导率低的缺点,缩短复合体系热响应时间,提高换热效率实现复合材料传热和储热一体化。
本文通过查阅大量文献以及亲自做实验得出了一些数据和结论。
正文
1.根据同济大学田胜力、张东、肖德炎、向阳等人2006年在《材料开发与应用》上发表的文章,他们对脂肪酸相变储能材料的热循环行为进行了系统的研究试验。试验选用了化学纯的癸酸、月桂酸、肉豆蔻酸和棕榈酸等四种脂肪酸为研究对象,利用差示扫描量热技术(DSC)测定了经过56次、112次、200次和400次反复热循环的相变材料的融化温度和融化潜热,加速热循环试验结果显示:癸酸融化温度范围变窄了4℃左右,肉豆蔻酸融化温度范围变宽了3℃左右,月桂酸和棕榈酸的融化温度范围变化不明显,其中以棕榈酸的融化温度变化最小。随着热循环次数的增加,相变材料的融化初始温度和融化潜热变化较小,且是没有规律的。在400次左右的热循环范围内,这些脂肪酸具有较好的热稳定性,有作为潜热储存材料的应用潜力。且此四种脂肪酸的融化温度在30℃到60℃之间,适于用作绿色建筑材料及其他室温范围内的潜热储存过程。考虑到相变材料的使用时间可能更长,因此要测试以上脂肪酸长期作为潜热储存材料的稳定性和可行性,需要更多次数的加速热循环实验来验证。而Ahmet
Sari在研究纯度为工业级的月桂酸、肉豆蔻酸、棕榈酸是发现,经过1200次热循环后,这些脂肪酸的融化温度均逐渐降低,降低最大值为6.78℃,并且,脂肪酸的融化温度变宽了。这与上文实验结果有所出入,可能是由于脂肪酸原材料的纯度和产地不同造成的。因此,原料的选取对材料的性能有很大影响。
2.2012年1月20日,中国科学院上海硅酸盐研究所的黄富强等人申请了他们的最新专利:三维石墨烯/相变储能复合材料及其制备方法。三维石墨烯/相变储能复合材料的特征在于石墨烯与相变储能材料原位复合,其中以具有三维结构的多孔石墨烯作为导热体和复合模板,以固-液相变的有机材料作为储能材料和填充剂。可以采用兼具曲面和平面特点的泡沫金属作为生长基体,利用CVD方法制备出具有三维连通网络结构的泡沫状石墨烯材料。通过该方法制备的石墨烯材料完整的复制了泡沫金属的结构,石墨烯以无缝连接的方式构成一个全连通的整体,具有优异的电荷传导能力,巨大的比表面积,孔隙率和极低密度。并且,这种方法可控性好,易于放大,通过改变工艺条件可以调控石墨烯的平均层数,石墨烯网络的比表面积,密度和导电性。以金属模板CVD法制备的三维石墨烯泡沫具有丰富的孔结构特征,其比表面积高,孔壁孔腔高度连通,为基体材料提供可复合填充的空间。若将三维多孔石墨烯和相变材料复合,相变储能材料被分隔在各个孔腔,与石墨烯壁紧密结合,有效热接触面积大幅度提高,高度连通的石墨烯三维导热网络通道将快速实现系统换热。另一方面多孔石墨烯的毛细吸附力将液态相变储能材料局域化,可有效防止渗透。
3.2012年6月来自于中国科学院能源转换材料重点实验室,上海硅酸盐研究所的周雅娟,黄富强等人发表了一篇名为太阳能材料和太阳能电池的论文,这篇论文重点讲解了他们最新研制出的一种由石墨烯三维气凝胶(GA)和硬脂酸(OA)组成的相变材料。GA是通过石墨烯氧化物在热水表面反应制得,三维石墨烯网络的空隙尺寸只有几微米而且薄壁墙是石墨烯片层堆积而成,OA通过GA的毛细管力牵引下进入到GA中。GA/OA复合材料的热稳定性达到了2.635W/mk,是OA的14倍。GA/OA复合材料的短暂升温和冷却过程是在为热能量存储做准备。GA是一种低密度材料因此在复合材料中仅占15%的比重,这种复合材料能够大大减少或消除材料内部的热电阻,表现出一种高储热的能力,达到181.8J/g,与独立的OA材料非常接近,研究中发现,大多数相变材料的热储存能力都较低,为了提高材料的热传递能力,金属泡沫添加剂进入了专家们的视野,然而他们进一步发现金属泡沫添加剂与原材料不兼容。经过数次实验得出的结论,石墨烯材料具有很好的热稳定性和热传递能力,并且与原材料兼容。由石墨烯片层组成的三维网络结构在相变材料领域有着巨大的潜力。
4.来自于浙江杭州辐射研究所的邢芳,李悟凡等人发表了关于烷烃类相变材料的文章。烷烃及其混合物由于自身的中低温度热能量储存能力已经被广泛应用于相变材料中。在这些烷烃中,熔化温度为37度的二十烷已经出现在诸如电子领域的基于能量储存的被动热管理技术中。为了提高二十烷的热导性,将石墨烯纳米片添加进二十烷这个课题正在试验中。这种复合相变材料是将石墨烯纳米片均匀分布在液体的二十烷中。通过扫描量热计测量它的热融合和融化点,我们发现在10度的时候热传导能力整整增加了4倍,这表明石墨烯纳米片相对于传统的一些填充来说有着更好的表现。石墨烯纳米片的两维平面形态降低了热表电阻,这也是为什么它效果这么好的原因。扩大的石墨烯片层有着高导电性和低密度性,能有效地增强相变材料的热性能。
5.同济大学材料科学与工程学院的田胜力、张东、肖德炎等人利用多孔石墨的毛细管作用吸附硬脂酸丁酯制成了一种定形相变材料的相变温度、相变潜热和热稳定性,得出硬脂酸丁酯含量的临界值。研究表明,硬脂酸丁酯与纳米多孔石墨形成的定形相变材料相变温度合适、相变潜热较大、热稳定性好,是适合于在建筑墙体中使用的相变材料。对不同含量的硬脂酸丁酯/多孔石墨复合材料利用差热扫描仪进行DSC测试显示,相变复合材料的峰值温度为26℃,与纯硬脂酸丁酯的熔点相同,即定形相变材料的熔点不变,为硬脂酸丁酯的熔点。定形材料的潜热随硬脂酸丁酯含量的变化而变化,硬脂酸丁酯含量越高,定形相变材料的相变潜热越大,近似呈线性关系。此定形相变材料的蓄热性能、均匀性和热稳定性好,具有较大的相变潜热,其相变温度在26℃,适合做室温相变材料,有助于建筑节能。此定形相变材料中硬脂酸丁酯的含量又一个渗出临界值,当硬脂酸丁酯质量含量达到90%时,有细微渗出,使用时建议把含量控制在85%以内。这种定形相变材料在经过多次热循环之后其相变潜热变化较小,具有良好的热稳定性。因此,硬脂酸丁酯/多孔石墨相变材料是较好的可应用于建筑墙体的相变材料。
6.2013年,新乡学院能源与燃料研究所的周建伟等人以氧化石墨烯为基质、硬脂酸为储热介质用液相插层法成功制备了硬脂酸/氧化石墨烯相变复合材料。其中以氧化石墨烯维持材料的形状、力学性能,把硬脂酸嵌在片层结构的氧化石墨烯基质中,通过相变吸收和释放能量,提高其储热、导热性能和循环性能。该相变材料具有适宜的相变温度和较高的相变潜热,相变材料与基质具有较好的相容性,在相变过程中没有液体泄漏现象,复合相变储热材料储/放热时间比硬脂酸减少,且热稳定性良好。实验表明,硬脂酸质量分数为40%的硬脂酸/氧化石墨烯复合相变材料的相变温度为67.9℃,相变潜热为289.2J/g。经过连续冷热循环试验发现,复合相变材料的储热/放热时间比纯硬脂酸缩短,相变温度和相变潜热变化较小,表明硬脂酸/氧化石墨烯复合相变材料具有良好的热稳定性和兼容性。因此,通过此方法一方面将硬脂酸局限在片层结构中,解决了相变过程中的渗出泄露问题;另一方面,利用氧化石墨烯良好的热传导性提高复合相变材料的传热效率,弥补了硬脂酸在导热、换热方面的缺陷。
7.2013年10月12日到10月16日,在上海举办的中国高分子学术论文报告会上,四川大学高分子材料科学与工程学院亓国强等人提出了他们的最新成果:聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究,研究发现聚乙二醇(PEG)是一种性能优良的固-液相变储能材料。相变过程中会发生熔体流动泄露,故需要对其进行封装,但封装又会降低其热导率,影响工作效率,增加成本。因而加入另一种物质作为支撑定型材料,制备复合定型相变材料成为另一种选择。但通常过高的添加量会严重影响材料的储能性能。于是通过向
PEG
中加入氧化石墨烯(GO)作为定型支撑材料,用溶液共混法在
GO
含量仅为
8%时成功制备了
PEG/GO
定型相变储能材料。该材料在超过熔点一倍时仍保持形状稳定。GO
的加入对相变材料熔点基本没有影响,但在低含量下促进结晶,当含量高于
4wt%时阻碍结晶的进行。相变潜热随
GO
含量的提升有所下降,但在能维持材料定型的最低含量(8wt%)时,仍高达
135
J/g,可以有效应用于储能领域。该材料在经历
200
次升降温循环后,相变温度和相变潜热变化不大,较稳定,具有良好的可重复使用性。
8.远在大洋彼岸,来自于加州大学河滨分校,加利福尼亚大学的Pradyumna
Goli,Stanislav
Legedza,Aditya
Dhar
等人一直在进行关于锂电池的研究。锂电池在在移动通讯和交通动力中扮演着重要角色,但是由于其自身的自加热作用使得使用寿命大大缩短,为了解决这一问题,学者们经过大量实验发现锂电池的可靠性通过将石墨烯作为填充材料能够大大的改善。传统的热管理电池由于其相位只在一个很小的温度范围内变化,减小了电池内温度的上升,故只能依赖于潜在的储热能。而将石墨烯掺入碳氢化合物相变材料中可以将其导电能力提高到原来的两个数量级倍,同时还保持潜储热能力。显热-潜热相结合的热传导组合能够大大地减少锂电池内部温度的上升。储热-热传导的方法即将在锂电池和其他类型电池的热管理领域引领一场变革。
9.2008年4月24日来自于首尔崇实大学工学院建筑系的Sumin
Kim
a,Lawrence
T.
Drzal
b等人研制出了一种具有高导电性和高储热能力的相变材料。使用剥离的石墨烯纳米片,石墨烯相变材料可以提高在液晶中的高导电性,热稳定性以及潜储热能力。在扫描电子显微镜显示下,石墨烯相变材料均匀分布在液晶中,而良好的均匀分布意味着高导电能力。石墨烯复合相变材料的热稳定能力在石墨烯内部结构的帮助下得到提升。而且,由于相变材料的电热稳定性,石墨烯复合相变材料具备了可持续再生能力。石墨烯相变复合材料在差示扫描热量法的热曲线中有两个峰,第一次在固-固过渡阶段,温度较低,峰显示为35.1度;第二次是固-液相变阶段时温度较高,峰显示为55.1度。石墨烯可以在保有其潜储热能力的情况下提高材料的热稳定性。相变材料具有高储热,低成本,无毒和无腐蚀性等特点而具有美好的前景。最近,一些无机,有机以及它们的混合物正在被应用于相变材料中,成为热门的研究课题。
10.
Fazel
Yavari等人在2011年也就石墨烯作为改性添加剂改良十八醇相变材料在《Physical
chemistry》上发表了文章。和很多有机相变材料一样,十八醇也具有热导率低,换热性能差,以及存在泄漏问题等缺点。Fazel
Yavari等人的研究表明,由于石墨烯低密度、高导热的特点,添加很低含量的石墨烯,就可以达到显著提高热导率、改良十八醇的目的。然而由于部分相变材料分子被限制在石墨烯层间空隙中,在工作温度范围并没有发生相变,从而使加入石墨烯后的复合材料的相变焓低于原相变材料,造成储热能力的损失。实验中,当石墨烯含量(质量分数)达到4%时,材料的热导率增加到原来的2.5倍,此时其相变焓只降低了15.4%。而如果用银纳米线代替石墨烯,要达到同等的热导率,需要使其含量达到45%,并带来高达50%的相变焓损失。综合实验表明,相比于其它微型添加材料,石墨烯能在不造成明显储热损失的前提下明显改良有机相变材料的热性能,为通过潜热的储存/释放实现热管理和热保护提供了新的可行性方案。
11.Jia-Nan
Shi,Ming-Der
Ger等人2013年在期刊《CARBON》上发表文章,阐述了有关石墨烯提高石蜡导热系数的研究成果。实验另辟蹊径,对比了剥离石墨薄片和石墨烯作为改性添加剂对于石蜡相变材料的不同影响。实验结果表明,剥离石墨薄片带来的热导率增量更高,石墨含量为10%的石蜡/石墨薄片复合材料的热导率为纯石蜡的十余倍。石墨烯表现出了极好的导电性,石蜡/石墨烯的电导率要远高于石蜡/石墨薄片,但是其热导率的增量比石墨薄片小。原因在于,虽然单层石墨烯热导率极高,但是石墨烯片层间微小空隙内存在的大量界面严重阻碍了热传导。同时,实验也发现,石墨烯在定形方面的作用要远过于石墨薄片。石墨含量2%的石蜡/石墨烯相变复合材料中,石蜡能在185.2℃高温下保持形态,这远远超过了石蜡相变的温度范围。而石蜡/石墨薄片复合材料中石蜡只能保持形态到67.0℃。少量的石墨烯和剥离石墨薄片都能作为低成本、高效率的改性添加剂应用于石蜡相变材料的导热和定形方面的改良。
12.
马来西亚的Mohammad
Mehrali等人对石蜡/石墨烯相变复合材料进行了系统的研究和测试。该项目应用了SEM、FT-IR、TGA、DSC等设备对制得的石蜡/石墨烯复合材料的材料特性和热学性能进行了测试和分析。所测试的石蜡质量分数为48.3%的样品在相变过程中无泄漏现象发生,为定形相变材料。SEM图像显示石蜡嵌入了石墨烯片层间的孔隙。FT-IR分析结果显示石蜡与石墨烯之间没有化学反应发生。试验进行了2500次熔化/凝固热循环检测来确认其热可靠性和化学稳定性。TGA测试结果显示,氧化石墨烯增强了复合材料的热稳定性。该相变复合材料的热导率从0.305(W/mk)显著提升到0.985(W/mk)。测试结果表明,石蜡/氧化石墨烯复合材料具有良好的热学性能、热可靠性、化学稳定性和导热性,很适合做热管理和热储存材料。
总结:
相变储能材料,通过材料相变时吸收或释放大量热量实现能量的储存和利用,以其巨大的相变潜热,在未来的能源利用和热管理领域具有很广泛的开发和应用价值。而大多数相变材料存在的导热率抵、换热性能差、相变过程发生泄漏等缺陷使其很难直接被应用于生产生活中。因此,需要一种改性填充材料来增加相变材料的导热换热性能,同时需要对相变材料进行定形和封装。而石墨烯材料的发现和研究成果的公布,给相变材料的研究和应用指明了道路。一方面,石墨烯的高导热性能很好地改善了相变材料的热性能,同时,其良好的化学稳定性和热学可靠性使其作为改性添加剂不与相变材料本体发生化学反应;另一方面,低密度、高强度的石墨烯结构能够使复合材料在较低石墨烯含量下就达到所要求的定形效果,因此,相比其他改性添加剂,石墨烯对相变材料的相变温度、相变潜热和储热能力的减益效果要小得多。正是从这两方面出发,石墨烯作为导热定形的改性材料,在相变储能材料领域得到广泛认可和应用。大量实验采用了以相变材料作为工作物质,通过其相变过程储/放热,同时以石墨烯作为载体基质,增加材料导热性能和不流动性的实验思路进行相变导热材料的设计、制备和改良。相信随着对石墨烯研究的深入和石墨烯制备工艺的进步,石墨烯会以更突出的性能改良相变材料,从而获得更有实践和应用价值的石墨烯/相变复合储能材料,为能源可持续和热管理领域带来更大的发展,为人类创造出更科学、更环保、更舒适的生活环境。
参考文献:
【1】田胜力,张东,肖德炎,等.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,21(1):9—12.
【2】亓国强
李亭
杨伟
谢邦互
杨鸣波
聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究
成都
四川大学高分子科学与工程学院
2013
【3】Yajuan
Zhong
Mi
Zhou
Fuqiang
Huang
Tianquan
Lin
Dongyun
Wan
Solar
Energy
Materials
and
Solar
Cells
Beijing
State
Key
Laboratory
of
Rare
Earth
Materials
Chemistry
and
Applications,College
of
Chemistry
and
Molecular
Engineering,Peking
University,2013
【4】Xin
Fang,?,?
Li-Wu
Fan,*,?,?
Qing
Ding,?,?
Xiao
Wang,?,?
Xiao-Li
Yao,?,?
Jian-Feng
Hou,?
Zi-Tao
Yu,?,Guan-Hua
Cheng,∥
Ya-Cai
Hu,?
and
Ke-Fa
Cen
Increased
Thermal
Conductivity
of
Eicosane-Based
Composite
PhaseChange
Materials
in
the
Presence
of
Graphene
Nanoplatelets
Zhejiang
2012
【5】田胜力,张东,肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能,2005,11:5—6.
【6】周建伟,程玉良,王储备
等.硬脂酸/氧化石墨烯复合相变储热材料研究[J].化工新型材料,2013,41(6):47—49.
【7】黄富强
仲亚娟
陈剑
万冬云
毕辉
三维石墨烯/相变储能复合材料及其制备方法
上海市长宁区定西路1295号
中国科学院上海硅酸盐研究所
2012
【8】Pradyumna
Goli,Stanislav
Legedza,Aditya
Dhar,RubenSalgado,Jacqueline
Renteria
and
Alexander
A.
Balandin*
Graphene-Enhanced
Hybrid
PhaseChange
Materials
for
ThermalManagement
of
Li-Ion
Batteries
USA
Nano-Device
Laboratory,Department
of
Electrical
Engineering
and
Materials
Scienceand
Engineering
Program,Bourns
College
of
Engineering,University
of
California
2013
【9】Sumin
Kim
a,?,Lawrence
T.
Drzal
b
Solar
Energy
Materials
&
Solar
Cells
USA
Department
of
Architecture,College
of
Engineering,Soongsil
University,Seoul
156-743,Republic
of
Korea
Composite
Materials
and
Structures
Center,College
of
Engineering,Michigan
State
University,East
Lansing,2008
【10】Fazel
Yavari,Hafez
Raeisi
Fard,Kamyar
Pashayi,etc.
Enhanced
Thermal
Conductivity
in
a
Nanostructured
Phase
Change
Composite
due
to
Low
Concentration
Graphene
Additives[J].
J.
Phys.
Chem.
C
2011,115,8753–8758.
【11】Jia-Nan
Shi,Ming-Der
Ger,Yih-Ming
Liu
.
Improving
the
thermal
conductivity
and
shape-stabilization
of
phase
change
materials
using
nanographite
additives[J].CARBON,51(2013)
:
365—372.
【12】Mohammad
Mehrali,Sara
Tahan
Latibari,Mehdi
Mehrali.
Shape-stabilized
phase
change
materials
with
high
thermal
conductivity
based
on
paraffin/graphene
oxide
composite[J].Energy
Conversion
and
Management,67(2013)
:
275—282.