七年级数学上册有理数及其运算7有理数的乘法教法建议与教材分析素材 本文关键词:有理数,教法,乘法,上册,运算
七年级数学上册有理数及其运算7有理数的乘法教法建议与教材分析素材 本文简介:《有理数的乘法》教法建议与教材分析教法建议1.教师可以采用对比的方法,对比小学学过的乘法运算.2.有理数的乘法法则,实际上是一种规定.在教学过程中,要注意创设情境,要学生理解这种规定的合理性,如水位升降问题,行程问题等等.3.引导学生仔细观察算式的因数与积的变化规律,使他们自己发现规律,并加以猜想.
七年级数学上册有理数及其运算7有理数的乘法教法建议与教材分析素材 本文内容:
《有理数的乘法》教法建议与教材分析
教法建议
1.教师可以采用对比的方法,对比小学学过的乘法运算.
2.有理数的乘法法则,实际上是一种规定.在教学过程中,要注意创设情境,要学生理解这种规定的合理性,如水位升降问题,行程问题等等.
3.引导学生仔细观察算式的因数与积的变化规律,使他们自己发现规律,并加以猜想.
4.运算熟练后,不必要求学生书写每一步的理由.
5.只要学生理解有理数的倒数定义与小学一样即可,怎么求倒数在下一节讨论.
6.让学生通过观察实例,用自己的语言表达所发现的规律,并与同伴进行交流.最后教师可以明晰:积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个因式为0,积就为0.但此段话不需要学生背.
教学目标
1.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力.
2.会进行有理数的乘法运算,能运用乘法运算律简化计算.
教学重点难点
本节的教学重点是能够熟练进行有理数的乘法运算.依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础.有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤.因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数.当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数.积的绝对值是各个因数的绝对值的积.运用乘法交换律恰当的结合因数可以简化运算过程.
本节的难点是对有理数的乘法法则的理解.有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的.乘法法则给出了判定积的符号和积的绝对值的方法.即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号.积的绝对值是这两个因数的绝对值的积.
篇2:七年级第一章有理数知识点总结
七年级第一章有理数知识点总结 本文关键词:有理数,知识点,七年级
七年级第一章有理数知识点总结 本文简介:有理数知识点总结正数:大于0的数叫做正数。1.概念负数:在正数前面加上负号“—”的数叫做负数。注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。(不是带“—”号的数都是负数,而是在正数前加“—”的数。)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
七年级第一章有理数知识点总结 本文内容:
有理数知识点总结
正数:大于0的数叫做正数。
1.概念
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,
一、正数和负数
自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。)
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
1.概念
整
数:正整数、0、负整数统称为整数。
分
数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。)
注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种
二、有理数
⑴按正、负性质分类:
⑵按整数、分数分类:
正有理数
正整数
正整数
有理数
正分数
整数
0
零
有理数
负整数
负有理数
负整数
分数
正分数
负分数
负分数
3.数集内容了解
1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度
2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴
比较大小:在数轴上,右边的数总比左边的数大
。
3.应用
求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)
代数:只有符号不同的两个数叫做相反数。
1.概念
(0的相反数是0)
几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,
若a+b=0,则a与b互为相反数。
四、相反数
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简
多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号
当“—”号的个数是奇数个时,结果取负号
1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)
五、倒数
2.性质
若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b=
-1则a与b互为负倒数。
1.
几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身
(若|a|=|b|,则a=b或a=﹣b)
2.代数意义
一个负数的绝对值是它的相反数
0的绝对值是0
a
>0,|a|=a
反之,|a|=a,则a≥0
六、绝对值
代数意义的符号语言
a
=
0,
|a|=0
|a|=﹣a,则a≦0
a<0,
|a|=
篇3:有理数知识点及经典题型总结讲义全
有理数知识点及经典题型总结讲义全 本文关键词:有理数,知识点,题型,讲义,经典
有理数知识点及经典题型总结讲义全 本文简介:一对一个性辅导第1讲有理数教学目标1、掌握有理数的分类,学会把有理数对应的点画在数轴上;2、掌握相反数、绝对值、倒数的求法,会比较有理数的大小;3、掌握有理数的大小比较;4、掌握有理数的加减乘除幂的运算法则,并会灵活解题。正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不
有理数知识点及经典题型总结讲义全 本文内容:
一对一个性辅导
第1讲
有
理
数
教学目标
1、掌握有理数的分类,学会把有理数对应的点画在数轴上;
2、掌握相反数、绝对值、倒数的求法,会比较有理数的大小;
3、掌握有理数的大小比较;
4、掌握有理数的加减乘除幂的运算法则,并会灵活解题。
正数和负数
⒈正数和负数的概念
负数:比0小的数
正数:比0大的数
0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.
具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
有理数
1.
有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.
有理数的分类
⑴按有理数的意义分类
⑵按正、负来分
正整数
正整数
整数
0
正有理数
负整数
正分数
有理数
有理数
0
(0不能忽视)
正分数
负整数
分数
负有理数
负分数
负分数
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a0时,-a0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
考试常考:已知a,b互为相反数,立马要想到a+b=0.
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
练习1.
绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;
⑵一个负数的绝对值是它的相反数;
⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a;
②如果a
|a|=a
(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)
②a≤0,
|a|=-a
(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即:
⑴0的绝对值是0;绝对值是0的数是0.即:a=0
|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简
①当a≥0时,
|a|=a
;
②当a≤0时,
|a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
例1.已知︱a︱=5,︱b︱=8,且︱a+b︱=
-(a+b),试求a+b的值。
练习2.已知︱a︱=5,︱b︱=8,且∣ab∣=
-ab,试求a+b的值。
有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b>0时,a+b>a
⑵当b0,则x-y=______.
3.x与2的差为,则-x=_____.
4.近似数1.50精确到_______,78950用科学记数法表示为_____.
5.按规律写数,-,,-,…第6个数是______.
二、选择题
1.下列说法正确的是(
)
A.
最小的有理数是0;
B.
最大的负整数是-1;
C.
最小的自然数是1;
D.
最小的正数是1.
2.下列说法正确的是(
)
A.
两个有理数的和为零,则这两个有理数都为0;
B.
两个有理数的和一定大于其中任何一个加数;
C.
两个有理数的和为正数,则这两个数中至少有一个加数是正数;
D.
两个有理数的和为负数,则这两个数一定都是负数.
3.下列说法正确的是(
)
A.
一个正数减去一个负数,结果是正数;
B.
零减去一个数一定是负数;
C.
一个负数减去一个负数,结果是负数;
D.
“-2-3”读作“负2减负3”
4.下列说法正确的是(
)
A.
个有理数相乘,当因数是奇数个时,积为负;
B.
个有理数相乘,当正因数有奇数个时,积为负;
C.
个有理数相乘,当负因数有奇数个时,积为负;
D.
个有理数相乘,当积为负时,负因数有奇数个.
5.下列说法正确的是(
)
A.
相反数是本身的数是1和0;
B.
倒数是本身的数是1和0;
C.
绝对值是
本身的数是0和正数;
D.
平方等于64的数是8.
6、已知字母、表示有理数,如果+=0,则下列说法正确的是(
)
A
.
、中一定有一个是负数
B.
、都为0
C.
与不可能相等
D.
与的绝对值相等
7、一个数的平方为16,则这个数是(
)
A.或
B.
C.
D.或
8、绝对值大于2且小于5的所有整数的和是
(
)
A.
7
B.
-7
C.
0
D.
5
10、等于(
)
A.
B.
C.
D.
11、数轴上的点A、B、C、D分别表示数a、b、c、d,已知A在B的右侧,C在B的左侧,D在B、C之间,则下列式子成立的是(
)
A、a-0.5,则a是正数
B、若0
D、b-c<
三、计算
1、+-4.8
2、
3、
4、
5、+
6、
7、…
四、解答题
1.如果、互为相反数,、互为倒数,没有倒数,的绝对值等于2.
那么代数式的值是多少?请你求出来.
2、已知与互为相反数,求的值。
3、已知均为非零的有理数,且,求的值。
4.“”代表一种新运算,已知,求的值.其中和满足方程.
五、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?
六、找规律:下列数中的第2003项是多少?2004项呢?第n个呢?
1,-2,3,-4,5,-6···
···
七、下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。(正号表示水位比前一天上升,负号表示水位比前一天下降)
⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?
⑵与上周末相比,本周末河流的水位是上升了还是下降了?
⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。
星期
日
一
二
三
四
五
六
水位变化(米)
+0.2
+0.8
-0.4
+0.2
+0.3
-0.5
-0.2
水位变化(米)
解:
1
0.8
0.6
0.4
0.2
0
日
一
二
三
四
五
六
星期
16