好好学习,天天向上,一流范文网欢迎您!
当前位置:首页 >> 最新范文 内容页

《复合材料习题》

《复合材料习题》word版 本文关键词:复合材料,习题,word

《复合材料习题》word版 本文简介:复合材料习题第三章一、判断题:判断以下各论点的正误。1、不饱和聚酯树脂是用量最大的聚合物复合材料基体。(?)2、环氧树脂是用于耐高温的热固性树脂基体。(′)3、热固性树脂是一种交联的高分子,一般不结晶;而热塑性树脂是线型、结晶的高分子。(′)4、聚酰亚胺是一类分子中含有基团的热固性树脂。(?)5、M

《复合材料习题》word版 本文内容:

复合材料习题

第三章

一、判断题:判断以下各论点的正误。

1、不饱和聚酯树脂是用量最大的聚合物复合材料基体。(?)

2、环氧树脂是用于耐高温的热固性树脂基体。(′)

3、热固性树脂是一种交联的高分子,一般不结晶;而热塑性树脂是线型、结晶的高分子。(′)

4、聚酰亚胺是一类分子中含有基团的热固性树脂。(?)

5、MMC具有比聚合物基复合材料更高的比强度和比模量。(′)

6、MMC具有比其基体金属或合金更高的比强度和比模量。(?)

7、原位复合MMC的增强材料/基体界面具有物理与化学稳定性。(?)

8、原位复合法制备MMC的基本思路是为了提高增强材料与基体之间的浸润性和减少界面反应。(?)

9一般,颗粒及晶须增强MMC的疲劳强度及寿命比基体金属或合金高。(?)

10、陶瓷纤维增强MMC的抗蠕变性能高于基体金属或合金。(?)

二、简述增强材料(增强体、功能体)在复合材料中所起的作用,并举例说明。

填充:廉价、颗粒状填料,降低成本。例:PVC中添加碳酸钙粉末。

增强:纤维状或片状增强体,提高复合材料的力学性能和热性能。效果取决于增强体本身的力学性能、形态等。例:TiC颗粒增强Si3N4复合材料、碳化钨/钴复合材料,切割工具;碳/碳复合材料,导弹、宇航工业的防热材料(抗烧蚀),端头帽、鼻锥、喷管的喉衬。

赋予功能:赋予复合材料特殊的物理、化学功能。作用取决于功能体的化学组成和结构。例:1-3型PZT棒/环氧树脂压电复合材料,换能器,用于人体组织探测。

、简述复合材料制造过程中增强材料的损伤类型及产生原因。

力学损伤:属于机械损伤,与纤维的脆性有关。脆性纤维(如陶瓷纤维)对表面划伤十分敏感,手工操作、工具操作,纤维间相互接触、摆放、缠绕过程都可能发生。

化学损伤:主要为热损伤,表现为高温制造过程中,增强体与基体之间化学反应过量,增强体中某些元素参与反应,增强体氧化。化学损伤与复合工艺条件及复合方法有关。热损伤伴随着增强体与基体之间界面结构的改变,产生界面反应层,使界面脆性增大、界面传递载荷的能力下降。

四、玻璃纤维为何具有高强度?试讨论影响玻璃纤维强度的因素。

玻璃的理论强度很高(2000-12000MPa),但是由于微裂纹的存在,产生应力集中,发生破坏,从而降低了玻璃的强度。玻璃纤维经高温成型时减少了玻璃溶液的不均一性,使得裂纹产生的机会减少;同时,玻璃纤维的横截面较小,微裂纹存在的几率也减少,导致玻璃纤维强度较高。

影响玻璃纤维强度的因素:

1、化学组成:不同的玻璃纤维(不同系统),强度有很大差别。一般来说,含碱量越高(K2O、PbO),玻璃纤维的强度越低。

2、玻璃纤维的直径和长度:随着玻璃纤维的直径和长度的减小,微裂纹的数量和尺寸相应地减小,从而提高了玻璃纤维的强度。

3、存放时间:玻璃纤维存放一定时间后,由于空气中的水分对玻璃纤维的侵蚀,导致强度下降。

4、施加负荷时间:玻璃纤维的拉伸强度随着施加负荷时间的增加而降低,当环境湿度较高时更加明显。原因:吸附在微裂纹中的水分,在外力作用下,加速微裂纹的扩展,从而导致强度降低。

五、简述玻璃纤维制造过程中浸润剂的作用。简述浸润剂的种类及其特点。

浸润剂的作用:使玻璃纤维黏合集束;增加润滑、防止磨损;消除静电、防止玻璃纤维原丝粘结;保证拉丝和纺织工序的顺利进行。

浸润剂的类型:

1、纺织型浸润剂:主要成分:石蜡、凡士林、硬酯酸、变压器油、固色剂、表面活性剂、水。能满足纺织加工的需要,但严重地阻碍树脂对玻璃布的浸润,影响树脂与玻璃纤维的粘结。含有石蜡乳剂的玻璃纤维及其制品使用时,要经过脱蜡处理。

2、增强型浸润剂:主要成分:成膜剂(水溶性树脂和树脂乳液)、偶联剂、润滑剂、润湿剂、抗静电剂等。这类浸润剂对玻璃钢的性能影响不大,浸胶(浸润树脂)前不需要清除。这种浸润剂在纺织时易使玻璃纤维起毛,一般用于生产无捻粗纱、无捻粗纱织物及短切纤维、短切纤维毡。

六、简述聚丙烯腈基碳纤维的制造工艺。

聚丙烯腈纤维的组成:丙烯腈(约96%)、丙烯酸甲酯(约3%)、亚甲基丁二酸(约1%-1.5%)。碳纤维的制造工艺分为三步:

1、稳定化处理:氧化性气氛中、200-300℃。

预氧化过程的目的:使链状聚丙烯腈分子发生交联、环化、氧化、脱氢等化学反应,形成耐热的梯形结构,以承受更高的碳化温度、提高碳化收率、改善力学性能。稳定化处理过程中先驱丝一直保持牵伸状态。

2、预氧丝的碳化处理:在高纯惰性气氛和一定张力下,将预氧丝加热至1000-1500℃发生热分解,以除去非碳原子(N、H、O等),形成乱层石墨结构,生成碳含量约95wt%的碳纤维。

3、碳纤维的石墨化处理:在高纯氩气保护下,快速升温至2000-3000℃,碳纤维中残留的非碳原子进一步脱除,乱层石墨结构转化为类似石墨的结晶状态。对纤维继续施加牵伸力,使石墨晶体的六角层平面平行于纤维轴取向。

七、举例说明碳纤维的应用。

作为复合材料的增强体。

航空、航天工业:主承力结构材料(机体、舱门、主翼、尾翼);次承力构件(Cf/环氧树脂:起落架、发动机舱、整流罩);防热材料(火箭喷嘴、鼻锥(Cf/C))。

交通运输:汽车传动轴、构架,制造快艇、巡逻艇。

运动器材:钓鱼竿、高尔夫球杆、网球拍、滑雪板、赛艇(Cf/环氧树脂)。

例:碳纤维增强金属基复合材料:军事领域(Cf/Al复合材料:直升机、导弹、坦克、鱼雷)、人造卫星、天线等方面的应用;轴承和高速旋转电机电刷方面的应用(Cf/Cu、Cf/Ag、碳纤维/青铜等复合材料);蓄电池极板的应用(Cf/Al复合材料)。

例:碳纤维增强陶瓷基复合材料:碳纤维增强氧化硅,航空、航天工业的候选材料,制作侦察卫星上支撑摄像机的平台。碳/碳复合材料:用作发动机叶片、防热板、火箭喷管喉衬以及导弹、航天飞机上的其它零部件。

TAG标签: