优秀教案 说课稿 评课稿 教学反思 学科试卷

2019新初二年级数学测试卷

日期:2019-05-16  类别:学科试卷  编辑:学科吧  【下载本文Word版

xxxx新初二年级数学测试卷同学们,中国学科吧(jsfw8.com)为您整理了,供广大老师参考。

一、选择题。(每小题3分,共30分)

1、若式子在实数范围内有意义,则x的取值范围是(  )

A.x≥B.x>C.x≥D.x>

2、下列二次根式中不能再化简的二次根式的是(  )

A.B.C.D.

3、以下列各组数为边的三角形中,是直角三角形的有(  )

(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.

A.1个B.2个C.3个D.4个

4、与直线y=2x+1关于x轴对称的直线是(  )

A.y=-2x+1B.y=-2x-1CD

5、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为(  )

A.B.C.D.

6、对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限 ③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是(  )

A  0    B 1   C   2    D 3

7、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A.2B.C.D.

8、八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为(  )

ABCD

9、如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是(  )

A.4B.3C.2D.1

10、小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是(  )

A.①②③B.①②④C.①③④D.①②③④

第10题图第9题图

二、写出你的结论,完美填空!(每小题3分,共24分)

11、对于正比例函数,的值随的值减小而减小,则的值为       。

12、从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话    分钟.

第17题图第18题图

13、写出一条经过第一、二、四象限的直线解析式为。

14当5个整数从小到大排列后,其中位数为4,如果这组数据的唯一众数是6,那么这5个数的和的最大值是。

15、如图,四边形ABCD的对角线AC,BD交于点O,有下列条件:①AO=CO,BO=DO;②AO=BO=CO=DO.其中能判断ABCD是矩形的条件是        (填序号)

16、已知的值是  .

17、没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为cm

18、已知在平面直角坐标系中,点O为坐标原点,过O的直线OM经过点A(6,6),过A作正方形ABCD,在直线OA上有一点E,过E作正方形EFGH,已知直线OC经过点G,且正方形ABCD的边长为2,正方形EFGH的边长为3,则点F的坐标为.

三、解答题。

19、计算(6分)

20(8分)、在平面直角坐标系中,已知:直线与直线的交点在第四象限,求整数的值。

21、(8分)某中学对“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元得人数共39人.

(1)他们一共抽查了多少人?

(2)这组数据的众数、中位数各是多少?

(3)若该校共有1500名学生,请估算全校学生共捐款多少元?

第22题图

22(8分)、如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.

(1)求证:∠ABE=∠EAD;

(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.

23(12分)、现场学习:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.

(1)△ABC的面积为: _________ ;

(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;

(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.

24、(12分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.

(1)求y与x的函数关系式,并求出自变量x的取值范围;

(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?

25(12分)、如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足,

(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;

(2)直线y=bx+

c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;

(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M。求的值

附:参考答案

一、1---10  ADBBD       BCABB

二、11、2   12、12   13、②14、5015、xxxx、(9,6)

三、17(1)(4分)   (2)2    (4分)

18、(1)过C作CE∥DA交AB于E,

∴∠A=∠CEB

又∠A=∠B

∴∠CEB=∠B

∴BC=EC

又∵AB∥DCCE∥DA

∴四边形AECD是平行四边形

∴AD=EC

∴AD=BC     (4分)

(2)(1)的逆命题:在梯形ABCD中,AB∥DC,若AD=BC,求证:∠A=∠B

证明:过C作CE∥DA交AB于E

∴∠A=∠CEB

又AB∥DCCE∥DA

∴四边形AECD是平行四边形

∴AD=EC

又∵AD=BC

∴BC=EC

∴∠CEB=∠B

∴∠A=∠B    (4分)

19、

证明:连结BD,

∵△ACB与△ECD都是等腰直角三角形,

∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,

∴2AC2=AB2.∠ECD-∠ECB=∠ACB-∠ECB,

∴∠ACE=∠BCD.

在△AEC和△BDC中,

AC=BC

∠ACE=∠BCD

EC=DC

∴△AEC≌△BDC(SAS).

∴AE=BD,∠AEC=∠BDC.

∴∠BDC=135°,

即∠ADB=90°.

∴AD2+BD2=AB2,

∴AD2+AE2=2AC2.    (8分)

20、证明:(1)在平行四边形ABCD中,AD∥BC,

∴∠AEB=∠EAD,

∵AE=AB,

∴∠ABE=∠AEB,

∴∠ABE=∠EAD;      (3分)

(2)∵AD∥BC,

∴∠ADB=∠DBE,

∵∠ABE=∠AEB,∠AEB=2∠ADB,

∴∠ABE=2∠ADB,

∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,

∴AB=AD,

又∵四边形ABCD是平行四边形,

∴四边形ABCD是菱形.       (5分)

21、∵直线y=﹣x+8,分别交x轴、y轴于A、B两点,

当x=0时,y=8;当y=0时,x=6.

∴OA=6,OB=8

∵CE是线段AB的垂直平分线

∴CB=CA

设OC=,则

解得:

∴点C的坐标为(﹣,0);    (6分)

∴△ABC的面积S=AC×OB=××8=       (2分)

22、解:(1)根据格子的数可以知道面积为S=3×3﹣=; (2分)

(2)画图为

计算出正确结果S△DEF=3;  (3分)

(3)利用构图法计算出S△PQR=

△PQR、△BCR、△DEQ、△AFP的面积相等

计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.                (5分)

23、解:(1)填表如下:

调入地

化肥量(吨)

调出地甲乡乙乡总计

A城x300﹣x300

B城260﹣x240﹣(300﹣x)200        (3分)

总计260240500

(2)根据题意得出:

y=20x+25(300﹣x)+25(260﹣x)+15[240﹣(300﹣x)]=﹣15x+13100;  (3分)

(3)因为y=﹣15x+13100,y随x的增大而减小,

根据题意可得:,

解得:60≤x≤260,

所以当x=260时,y最小,此时y=9200元.

此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨.      (4分)

24、(1)由题意得,直线y=bx+c的解析式为:y=2x+8

D(2,2).(4分)

(2)当y=0时,x=﹣4,∴E点的坐标为(﹣4,0).

当直线EF平移到过D点时正好平分正方形AOBC的面积.

设平移后的直线为y=2x+b,代入D点坐标,求得b=﹣2.

此时直线和x轴的交点坐标为(1,0),平移的距离为5,所以t=5秒.(8分)

(3)过P点作NQ∥OA,GH∥CO,交CO、AB于N、Q,交CB、OA于G、H.

易证△OPH≌△MPQ,四边形CNPG为正方形.

∴PG=BQ=CN.

∴,即.(12分)

初中的相关内容就为大家介绍到这儿了,希望能帮助到大家。

    以上《2019新初二年级数学测试卷》范文由学科吧精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »学科吧»学科试卷»2019新初二年级数学测试卷
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 学科吧 如对《2019新初二年级数学测试卷》有疑问请及时反馈。All Rights Reserved