[编辑推荐]高中学生在学习中或多或少有一些困惑,中国学科吧(jsfw8.com)的编辑为大家总结了xxxx年高中高二第二学期数学期末考试试卷,各位考生可以参考。
一、选择题:(每小题只有一个选项正确,每小题5分,共60分)
1.如图所示,是全集,是的子集,则阴影部分所表示的集合为()
(A)(B)
(C)(D)
2.已知向量,则向量的夹角为()
A.B.C.D.
3.已知ξ~N(0,62),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于( )
A.0.1B.0.2C.0.6D.0.8
4.若直线过圆的圆心,则的值为()
A.B.C.D.
5.“”是“直线和平行”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
6.已知,并且是第二象限的角,那么的值等于()
A.B.C.D.
7.若直线不平行于平面,且,则()
A.内的所有直线与异面B.内不存在与平行的直线
C.内存在唯一的直线与平行D.内的直线与都相交
8.下列命题中错误的个数是()
①命题“若则x=1”的否命题是“若则x≠1”
②命题P:,使,则,使
③若P且q为假命题,则P、q均为假命题
④是函数为偶函数的充要条件
A.1B.2C.3D.4
9.有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有( )种不同去法
A.36种 B.35种 C.63种 D.64种
10.二项式的展开式的第二项的系数为,则的值为()
A.B.C.或D.或
11.已知点是抛物线的焦点,是抛物线上的两点,,则线段的中点到轴的距离为()
A.B.C.D.
12.若多项式=,则()
A.9B.10C.D.
二、填空题:(每小题5分,共20分)
13.如图,点是圆上的点,且,则圆的面积等于.
14.设向量,若向量与向量共线,则
15.已知数列为等差数列,若,则.
16.如果一条直线和平面内的一条直线平行,那么直线和平面的关系是.
三、解答题:(写出必要的解题过程,6大题共70分)
17.(本题满分10分)
设X是一个离散型随机变量,其分布列如下表,试求随机变量的期望EX与方差DX.
X-101
P
1-2qq2
18.(本题满分12分)
已知函数
(Ⅰ)求函数的最小正周期及单调递增区间;(6分)
(Ⅱ)在中,若,,,求的值.(6分)
19.(本题满分12分)
已知数列{an}的前n项和,且Sn的最大值为8.
(1)确定常数k,求an;(5分)
(2)求数列的前n项和Tn。(7分)
20.(本题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.
(1)求甲,乙两组各抽取的人数;(2分)
(2)求从甲组抽取的工人中恰有1名女工的概率;(3分)
(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.(7分)
21.(本题满分12分)
设椭圆C:过点,且离心率.
(Ⅰ)求椭圆C的方程;(4分)
(Ⅱ)学生做:过右焦点的动直线交椭圆于点,若以AB为直径的圆经过短轴上端点,求直线AB的方程;(8分)
教师做:过右焦点的动直线交椭圆于点,设椭圆的左顶点为,连接且交动直线于;若以MN为直径的圆恒过右焦点F,求的值.
22.(本题满分12分)
设函数,。
(1)若函数在处与直线相切;
①求实数的值;(3分)
②求函数上的最大值;(4分)
(2)学生做:当时,若不等式对所有的都成立,求实数的取值范围.(5分)
教师做:当时,若不等式对所有的都成立,求实数的取值范围.
以上就是xxxx年高中高二第二学期数学期末考试试卷的全部内容,更多考试资讯请继续关注中国学科吧(jsfw8.com)!
同类热门:
xxxx年高二数学下学期期末测试卷答案解析