2019年普通高等学校招生全国统一考试(广东卷)A
数学(理科)
本试卷共4页,21题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。
锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的
1设i为虚数单位,则复数=
A6+5iB6-5iC-6+5iD-6-5i
2设集合U={1,2,3,4,5,6},M={1,2,4}则CuM=
A.UB{1,3,5}C{3,5,6}D{2,4,6}
3若向量=(2,3),=(4,7),则=
A(-2,-4)B(3,4)C(6,10)D(-6,-10)
4.下列函数中,在区间(0,+∞)上为增函数的是
A.y=ln(x+2)B.y=-C.y=()xD.y=x+
5.已知变量x,y满足约束条件,则z=3x+y的最大值为
A.12B.11C.3D.-1
6,某几何体的三视图如图1所示,它的体积为
A.12πB.45πC.57πD.81π
7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是
A.B.C.D.
8.对任意两个非零的平面向量α和β,定义。若平面向量a,b满足|a|≥|b|>0,a与b的夹角,且a•b和b•a都在集合中,则
A.B.1C.D.
二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
(一)必做题(9-13题)
9.不等式|x+2|-|x|≤1的解集为_____。
10.的展开式中x³的系数为______。(用数字作答)
11.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
(二)选做题(14-15题,考生只能从中选做一题)
14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。
15.(几何证明选讲选做题)如图3,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A做圆O的切线与OC的延长线交于点P,则PA=_____________。
三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
已知函数,(其中ω>0,x∈R)的最小正周期为10π。
(1)求ω的值;
(2)设,,,求cos(α+β)的值。
17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80][80,90][90,100]。
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望。
18.(本小题满分13分)
如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE。
(1)证明:BD⊥平面PAC;
(2)若PH=1,AD=2,求二面角B-PC-A的正切值;
19.(本小题满分14分)
设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1,n∈N﹡,且a1,a2+5,a3成等差数列。
(1)求a1的值;
(2)求数列{an}的通项公式。
(3)证明:对一切正整数n,有.
20.(本小题满分14分)
在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。
21.(本小题满分14分)
设a<1,集合
(1)求集合D(用区间表示)
(2)求函数在D内的极值点。
全文下载:2019年普通高等学校招生全国统一考试(广东卷)A