优秀教案 说课稿 评课稿 教学反思 学科试卷

高中2019年高二数学下学期期末试卷

日期:2019-05-16  类别:学科试卷  编辑:学科吧  【下载本文Word版

本文导航

1、首页2、高二数学下学期期末试卷答案-23、高二数学下学期期末试卷答案-3

高中xxxx年高二数学下学期期末试卷答案

[编辑推荐]中国学科吧(jsfw8.com)高中频道的编辑就为您准备了高中xxxx年高二数学下学期期末试卷答案

二、解答题

15.解:由得:时成立

,解得

(5分)

由得:解得(7分)

中有且只有一个为真命题

∴真假或假真

若真假,(10分)

若假真,则(13分)

∴满足条件的的取值范围为或(14分)

16.解(1)(1分)

(5分)

(2)当,即时,,满足(6分)

当,即时,

,∴或,解得(9分)

当,即时,

,∴或,解得或(12分)

综上,∴满足条件的的取值范围为或(14分)

17.解法1:设当水深hcm时圆锥横截面半径为rcm,对应体积为V可知,

,,

又当时,且,

即,当时,.

答:当水深为4cm时,水面升高的瞬时变化率为.

解法2:由得

于是又当时,故.

答:当水深为4cm时,水面升高的瞬时变化率为.

解法3:易知当水深为4时,水面直径为3,设经秒后水面上升为,则此时水的增量近似地(看成圆柱)为.

答:当水深为4cm时,水面升高的瞬时变化率为.

本文导航

1、首页2、高二数学下学期期末试卷答案-23、高二数学下学期期末试卷答案-3

18令t=log2x,

(1)h(x)=(4-2log2x)•log2x=-2(t-1)2+2,

∵x∈[1,2],∴t∈[0,1],

∴h(x)的值域为[0,2].(4分)

(2)M(x)=gx,fx≥gx,fx,fx

f(x)-g(x)=3(1-log2x),

当02时,f(x)

∴M(x)=log2x,02,

当0

当x>2时,M(x)<1.

综上:当x=2时,M(x)取到最大值为1.(10分)

(3)(3-4)(3-)>

,.

①当

(没说明单调性的扣2分)

综述,16分

19解:(1)次品数为:

正品数:(3分)

∴(8分)

(2)令,则,(9分)

(10分)

(13分)

当且仅当,即时取得最大盈利,此时.(15分)

本文导航

1、首页2、高二数学下学期期末试卷答案-23、高二数学下学期期末试卷答案-3

故为获得最大盈利,该厂的日产量应定为件.(16分)(利用导数相应给分)

20解:(1)不是“()型函数”,因为不存在实数对使得,即对定义域中的每一个都成立;........2分

(2)由,得,所以存在实数对,如,使得对任意的都成立;.........................4分

(3)由题意得,,所以当时,,其中,而时,,其对称轴方程为...........................6分

①当,即时,在上的值域为,即,则在上的值域为,由题意得,

从而;........................9分

②当,即时,的值域为,即,

则在上的值域为,则由题意,得且,解得;................12分

③当,即时,的值域为,即,则在上的值域为,

即,则,

解得............15分

综上所述,所求的取值范围是............16分

以上就是小编为大家准备的高中xxxx年高二数学下学期期末试卷答案,希望给大家带来帮助。

同类热门:

人教版高二数学第二学期期末考试试题分析

    以上《高中2019年高二数学下学期期末试卷》范文由学科吧精心整理,如果您觉得有用,请收藏及关注我们,或向其它人分享我们。转载请注明出处 »学科吧»学科试卷»高中2019年高二数学下学期期末试卷
‖大家正在看...
设为首页 - 加入收藏 - 关于范文吧 - 返回顶部 - 手机版
Copyright © 学科吧 如对《高中2019年高二数学下学期期末试卷》有疑问请及时反馈。All Rights Reserved