由中国学科吧(jsfw8.com)为您提供的xxxx高二数学下学期期末考试试题,希望您阅读愉快!
一、选择题(本大题共12小题,每小题5分,满分60分,每题四个选项中只有一项是符合题目要求的)
1.等于( )A.-3i B.-32iC.iD.-i
2.用数学归纳法证明1+++…+=-(≠1,n∈N*),在验证n=1成立时,左边的项是( )
A.1B.1+C.1++D.1+++
3在验证吸烟与否与患肺炎与否有关的统计中,根据计算结果,认为这两件事情无关的可能性不足1%,那么的一个可能取值为( )
A.6.635B.5.024C.7.897D.3.841
4在极坐标系中,以极点为坐标原点,极轴为x轴正半轴,建立直角坐标系,点M(2,)的直角坐标是()
A.(2,1)B.(,1)C.(1,)D.(1,2)
5.在一个投掷硬币的游戏中,把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于( )
A.12 B.14 C.16 D.18
6.如图,阴影部分的面积是( )
A.23B.2-3C.323D.353
7我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )
A.12种B.18种C.24种D.48种
8.(n∈N+)的展开式中含有常数项为第( )项
A.4 B.5 C.6 D.7
9.口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X=2)=730,则n的值为( )
A.5B.6C.7D.8
10有四辆不同特警车准备进驻四个编号为1,2,3,4的人群聚集地,其中有一个地方没有特警车的方法共________种.
A.144B.182C.106 D.170
11直线的参数方程为(t为参数),则直线的倾斜角为( )
A.B.C.D.
12.已知函数=,则下列结论正确的是( )
A.当x=1ln2时取最大值B.当x=1ln2时取最小值
C.当x=-1ln2时取最大值D.当x=-1ln2时取最小值
卷II
二、填空题(本大题共4小题,每小题5分,共20分)
13在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.
14复数z满足方程=4,那么复数z在复平面内对应的点P的轨迹方程____________
15下列五个命题
①任何两个变量都具有相关关系②圆的周长与该圆的半径具有相关关系
③某商品的需求量与该商品的价格是一种非确定性关系
④根据散点图求得的回归直线方程可能是没有意义的
⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究
正确命题的序号为____________.
16古希腊毕达哥拉斯学派的数学家研究过各种多边形数。如三角形数1,3,6,10•••,第n个三角形数为。记第n个k边形数为N(n,k)(),以下列出了部分k边形数中第n个数的表达式:
三角形数N(n,3)=
正方形数N(n,4)=
五边形数N(n,5)=
六边形数N(n,6)=
可以推测N(n,k)的表达式,由此计算N(10,24)=____________
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程演算步骤)
17(本小题满分10分)如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)的共轭复数z对应的点在第一象限,求实数m的取值范围.
18.(本小题12分)打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,(1)将本题的2*2联表格补充完整。
(2)用提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示:
患心脏病未患心脏病合计
每一晚都打鼾317a=
不打鼾
;2128b=
合计c=d=n=
19(本小题12分)给出四个等式:1=1
1-4=-(1+2)
1-4+9=1+2+3
1-4+9-16=-(1+2+3+4)
……
(1)写出第5,6个等式,并猜测第n(n∈N*)个等式
(2)用数学归纳法证明你猜测的等式.
20(本小题12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格品的概率;
(2)若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及数学期望E(ξ),并求该商家拒收这批产品的概率.
21(本小题12分)已知函数的图象上一点P(1,0),且在P点处的切线与直线平行.
(1)求函数的解析式;
(2)求函数在区间[0,t](0
(3)在(1)的结论下,关于x的方程在区间[1,3]上恰有两个相异的实根,求实数c的取值范围
22(本小题12分)已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线L的参数方程为(t为参数)
(1)写出直线L的普通方程与Q曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C,设M(x,y)为C上任意一点,求的最小值,并求相应的点M的坐标
中国学科吧(jsfw8.com)给您带来的xxxx高二数学下学期期末考试试题,希望可以更好的帮助到您!!